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ABSTRACT

Controlling the quantities of biomass and carbon 
contained in Cameroon’s tropical forests is an asset 
for the successful implementation of climate change 
mitigation strategies. The aim of this study was to 
assess the biomass and carbon stored by the forests 
along the western slopes of the Bamboutos Mountains 
and to examine whether altitude has an influence on 
basal area, stem density, wood density and biomass 
values. Inventory data from 18 plots of 0.5 hectare 
each, established in mid-altitude and submontane 
forests were used. Biomasses were obtained using the 
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non-destructive method. Estimates of above-ground 
biomass using trunk diameter, height and wood 
density gave a mean value of 155.49±57.54 t. ha-1; 
292.28±90.81 t. ha-1, compared with 150.49±42.16 
t. ha-1, 165.62±45.74 when height was excluded in 
mid-altitude and submontane forests respectively. The 
comparison test showed that there was no significant 
difference in these biomass values. PCA showed a 
positive relationship between altitude and these three 
variables (stem density, basal area and biomass). The 
large-tree diameter class (≥ 70 cm) contributed 41% 
to biomass accumulation in the submontane forest 
compared with 22.9% in the mid-altitude forest. Na-
poleonaea egertonii and Santiria trimeria showed the 
highest biomass values in the mid-altitude and sub-
montane forest respectively, revealing that biomass 
varies according to species and depends on the size 
and abundance of the species concerned. This study 
showed that height made little contribution to biomass 
accumulation and that the quantities of certain struc-
tural parameters increased with altitude. The results 
of this study highlight the role played by the forests 
of the Bamboutos Mountains in climate regulation.

Keywords   Biomass, Altitudinal gradient, Bambou-
tos Mountains, REDD+, Allometric.          

INTRODUCTION

The Congo Basin rainforest is one of the largest in 
the world, estimated at 286 million hectares. These 
forests constitute an incredible reserve of biodiversity 
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and provide several ecosystem services, including 
regulation; hence their role in purifying water and 
absorbing greenhouse gases such as CO2 (Janicot 
et al. 2015, Spracklen and Righelato 2014). Forest 
ecosystems make a significant contribution to se-
questering the carbon contained in the CO2 released 
into the atmosphere each year (EFESE 2019, Janicot 
et al. 2015). Their ability to sequester carbon from 
the atmosphere and store it makes them an essential 
means of mitigating climate change (Pilli et al. 2016, 
Galbert et al. 2013). Tropical forests store around 55% 
of the world’s forest carbon, acting as carbon sinks 
thanks to a positive balance between tree growth, 
recruitment and mortality (Pan et al. 2011). Despite 
their role as carbon reservoirs, tropical forests are 
increasingly facing degradation and deforestation 
due to the expansion of agricultural land and local 
populations’ need for wood for a variety of uses. Re-
search has shown that 13% of CO2 emissions come 
from agriculture, forestry and other land uses (IPCC 
2021). The United Nations Framework Convention 
on Climate Change therefore encourages developing 
countries to REDD+ (FAO 2015).

REDD+ aims to progressively halt the loss of 
carbon from forests in developing countries (WWF 
2016). This also involves quantifying the carbon 
stocks in the various forest ecosystems so that they 
can be better conserved or improved. Above-ground 
biomass, dead wood, liter, soil organic matter and 
roots are the main components of a tropical forest’s 
carbon stock (Gibbs et al. 2007). Major efforts are 
increasingly being made to improve databases on 
CO2 stocks and fluxes, by integrating both indirect 
methods (remote sensing) and direct in situ measure-
ments (Zakari et al. 2022, Jha et al. 2019, Bocko et al. 
2017, Ekoungoulou et al. 20015, Lewis et al. 2013, 
Djuikouo et al. 2010). A change in above-ground 
biomass at the plot scale has been demonstrated 
in old-growth tropical forests between continents 
(Slik et al. 2013) and across tropical Africa (Lewis 
et al. 2013), and at the local scale in Central Africa 
(Fayolle et al. 2016, Imani et al. 2017). Numerous 
scientific studies have shown that tropical forests 
vary in structure and species composition along an 
altitudinal gradient (Girardin et al. 2010, 2014, Ash-
ton 2003, Tiokeng et al. 2019). The influence of this 
factor can certainly affect the biomass of these areas 

and consequently the rate of carbon sequestered by the 
vegetation in these environments. However, biomass 
increases exponentially with tree diameter, density of 
large trees and basal area (Slik et al. 2010, Lewis et 
al. 2013, Poorter et al. 2015).

Above ground biomass studies carried out along 
an altitudinal gradient have shown, for some, a de-
creasing relationship with increasing altitude (Gon-
madje et al. 2017, Girardin et al.  2014, Leuschner et 
al. 2013) and for others, the opposite (Cuni-Sanchez 
et al. 2017). In addition, some research shows that 
there is no significant relationship between biomass 
and altitude; thus, the relationship between these two 
parameters does not seem to be clearly defined. The 
link between significant change in above-ground 
biomass at plot level has also been demonstrated in 
old-growth tropical forests both between continents 
(Slik et al. 2013) and across tropical Africa (Lewis et 
al. 2013) and locally in Central Africa (Doetterl et al. 
2015, Fayolle et al. 2016, Imani et al. 2017, Panzou et 
al. 2018). In the mountain forests of northern Kenya, 
mixed forests were found to store higher quantities 
of above-ground biomass than other forest types 
(Cuni-Sanchez et al. 2017).

In Cameroon, very few ecological studies have 
been carried out to date to estimate biomass and 
carbon according to altitudinal gradation. Examples 
include the work of Sainge et al. (2020) based on 
above-ground biomass in the Mont Rumpi Forest 
reserve along an altitudinal gradient and that of 
Gonmadje et al. (2017) in the Ngovayang massifs, 
which showed high biomass values in low-altitude 
forests. An assessment of above-ground biomass 
carried out in the old-growth and secondary forests of 
Mont Okou and Mont Mbam showed non-significant 
differences in biomass recorded at different altitudes. 
However, the highest biomasses were recorded in 
old-growth forests (Ngute et al. 2019). On the other 
hand, work carried out in the former high-altitude wet 
savannahs on the eastern slopes of the Bamboutos 
Mountains shows that carbon stock decreases with 
altitude (Fogaing et al. 2021). Biomass and carbon 
data based on altitude remain incomplete, as they do 
not give a more complete idea of the quantities of 
biomass available in all these zones. Much remains to 
be done despite the existence of the aforementioned 
studies. The aim of this study was therefore to assess 
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the biomass and carbon stored by the forests along 
the western slopes of the Bamboutos Mountains and 
to examine whether altitude has an influence on basal 
area, stem density, wood density and biomass values.

MATERIALS AND METHODS 

Study area
The western slopes of the Monts Bambouto are lo-

Fig. 1. Representation of floristic surveys in Bangang and Fossi-
mondi forests.

cated in the oceanic part of the Cameroonian ridge 
(Nzogning 1997). Biafran Atlantic forests are found 
here (Bergl et al. 2007). Bangang mid-altitude forest 
and Fossimondi submontane forest located along the 
western slopes of the Mont Bamboutos are the focus 
of this study. The Bangang mid-altitude forest is 
located between 200 m and 600 m above sea level. 
The mean geographical coordinates are 5°36’10.5” 
north latitude and 9°54’24.5” east longitude. The 
Fossimondi submontane forest lies between 1000 m 
and 1900 m above sea level, with mean geograph-
ical coordinates of 5°37’54.5” north latitude and 
9°57’57.6” east longitude (Fig. 1).

Lebialem has an equatorial climate with two 
seasons: A long rainy season (March to November) 
and a short dry season (December to February). 
Temperatures range from 15.2°C to 18.2°C and 25°C 
to 27.7°C in Fossimondi and Bangang respectively, 
with annual averages of 16.8°C and 26.34°C/year 
(Figs. 2A- 2B). Average rainfall is 2112 mm/year in 
Fossimondi and 2530 mm/year in Bangang (http://
fr.climate-data.org/location/780244/, accessed 01-02-
2016). Soil textures vary. Some are ferralitic, acidic 
lateritic, others are sandy, poorly drained and gravelly 
(Nembot and Tchanou 1998).

Plant census and identification

Eighteen temporary plots measuring 250 m x 20 m 
(0.5 ha) were established in two forests on the western 
slopes of Monts Bamboutos. The coordinates of each 
plot were taken using a Garmin V GPS. Within each 
plot, all trees with a diameter at breast height (1.30 m) 

Fig. 2. Umbrothermal diagram for the villages of Fossimondi (A) and Bangang (B).
(source: http: //fr.climate-data.org/location/780244/, consulted on 01-02-2016)
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≥ 10 cm were counted and their diameter measured 
using a tape measure.  Plants were identified on site 
with the help of a botanist. Unknown species were 
taken to the national herbarium for identification 
by comparison with herbarium samples and using 
documents dealing with the flora of the tropical 
zone (Hutchinson and Dalziel 1954-1972, Vivien 
and Faure 1985).

Estimation of above-ground biomass

Non-destructive method was used to estimate the 
biomass in order to deduce the carbon stock although 
the choice of allometric regression model used to 
convert tree structure data into biomass is one of the 
most important sources of ambiguity in estimating 
carbon stocks in tropical forests (Molto et al. 2013, 
Gonmadje et al. 2017). Since the study was carried 
out in dense tropical forests, particularly in the Con-
go Basin, two regional allometric models developed 
respectively by Fayolle et al. (2018) and Chave et 
al. (2014) were used to calculate the above-ground 
biomass of each plot. The first equation is based on 
the diameter and wood density of each tree is that of 
Fayolle et al. (2018).

            BA=Exp (0,046+1,156 log (WSG) +1,123×
            log (D)+0,436 × (log (D)2- 0,045 × (log (D)3 )  

Where, BA is the estimated above-ground biomass 
(kg), D is the trunk diameter (cm) and WSG is the 
wood density (g.cm-3). The second equation has the 
particularity of including the height parameter (H) in 
addition to the diameter and wood density; it is that 
of Chave et al. (2014). It was chosen to see which 
of the two equations had the highest biomass and 
carbon values.

                 BA=0,0673 × (WSG × D2 × H)0,976

Where, H is the total height of the tree.

Given the difficulty in collecting data on tree height in 
dense tropical forests, this parameter was calculated 
on the basis of the equation established by Djomo et 
al. (2016).

                      H= e 1,321+0,482lnD+0,027lnWSG

The wood densities of each species sampled were 
obtained from wood density databases (Zanne et al. 
2009, Reyes et al.1992). The mean density of Afri-
can wood (0.65) was used for species with unknown 
specific density (Lewis et al. 2013). For better inter-
pretation and comparison of the results with others, 
the extrapolation of the plot values to the hectare was 
done using an expansion factor noted:

                                        10000 m2

Expansion factor= ––––––––––––––––– (Walker et al. 2011)
                                Plot surface area m2

Below biomass (SB) was calculated using the equa-
tion of Cairns et al. (1997), adapted to tropical forests 
and their tree roots.

                      BS = e (-1,0587+0,8836 × ln (BA),

To assess the carbon stock of the forests studied, the 
relationship C stock (tC/ha) = CF*(BA+BS) was 
used.

With CF = Carbon Fraction, whose default value 
is 0.47 for all species combined (IPCC 2006).

Mean carbon stock (tC/ha/plot) per plot = Sum 
of carbon values (tC/ha)/number of plots. Finally, the 
CO2

 sequestered by the trees was obtained using the 
relationship CO2 atm= Stock Cx3.667.

The contribution of the size of the different 
trees to Biomass values was assessed; thus, three 
diameter classes were defined according to strata: 
A lower stratum consisting of small trees (10 dbh < 
30 cm), a middle stratum with large trees, most of 
which reach the canopy (30 cm dbh < 70 cm), and 
the upper stratum corresponding to the largest trees, 
which are either in the canopy or emerging, with a 
dbh greater than or equal to 70 cm (Slik et al. 2010, 
Gonmadje et al. 2017).

RESULTS AND DISCUSSION

Variation of different parameters within plots

A total of 4285 individuals comprising 161 species, 
127 genera and 48 families were counted in the 
Bangang mid-altitude forest. In the submontane 
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forest of Fossimondi, a total of 4,837 individuals 
were inventoried, belonging to 168 species, 131 
genera and 61 families. The above ground biomasses 
recorded over 5 hectares in the mid-altitude forest 
of Bangang are 1504.99 and 1554.98 tons (mean  of 
150.49±42.16 and 155.49±57.54 t. ha-1 respectively 
for the equations of Fayolle et al. (2018) and Chave 
et al. (2014) whereas in the Fosimondi submontane 
forest, the above-ground biomasses are 1324.99 and 
2338.26 tons over a total sampled area of 4 hectares 
(i.e. an average of 165.62±45.74 and 292.28±90.81 t. 
ha-1) for the Fayolle and Chave equations respectively.

Observation of changes in the values of the 
various variables per plot reveals that the quantities 
of total biomass, total carbon and total CO2 vary not 
only from one plot to another but also with the type 
of equation used (Table 1). Thus, in the mid-altitude 
forest of Bangang, the total biomass values per plot 
vary between 162 and 225.78 t ha-1 (mean 201.05 ± 
54.55 t ha-1) for the Fayolle equation, whereas for 
the Chave equation, the variation ranges from 182.3 

to 253.67 t. ha-1(mean of 203.5 ± 72.46 t. ha-1). The 
quantities of carbon stored vary between 80.6 and 
160.12 t. ha-1 (mean of 100.52± 27.27t. ha-1) with the 
Fayolle equation, then from 54.04 t. ha-1 to 185.18 
t. ha-1 (mean of 101.74± 36.23 t. ha-1) for the Chave 
equation. The highest CO2 values are 402.63 and 
678.99 t. ha-1 respectively for the Fayolle and Chave 
equations. 

In the Fossimondi submontane forest, biomass 
values per plot obtained from the equation of Fayolle 
et al. (2018) range from 166.16 to 327.97 t. ha-1(mean 
of 222.60±59.18 t. ha-1 while those of Chave et al. 
(2014) range from 254.42 to 541.99 t. ha-1(mean of 
370.50±108.58 t. ha-1). The carbon stock ranges from 
83.08 to 163 t. ha-1(with an average of 111.29±29.59 
t. ha-1) for the Fayolle et al. (2018) equation, whereas 
in Chave et al. (2014), carbon values ranging from 
127.21 t. ha-1 to 270.99 t. ha-1 (with an average of 
185.25±54.29t. ha-1) were recorded. The high quan-
tities of CO2 are 601.23 t. ha-1 and 993.64 t. ha-1 

respectively for the Fayolle and Chave equations.

Table 1. Biomass, carbon and CO2 recorded per plot in the two forests.

           Forêt de moyenne altitude
                      Alt. (m)        Bt_Fay (t.ha-1)     Bt_Ch (t.ha-1)     Ct_Fay (t.ha-1)     Ct_Ch (t.ha-1)      CO2_Fay (t.ha-1)    CO2_Ch(t.ha-1) 

BG1 431      162 139,86       81 69,92    297 256,41
BG2 613 201,12 182,3 100,56 91,15 368,7 334,19
BG3 544 320,24 370,38 160,12 185,18 587,06 678,99
BG4 298 216,74 253,67 108,37 126,83 397,329 465,02
BG5 304 182,65 203,1 91,325 101,55 334,85 372,33
BG6 216 112,37 108,08 56,185 54,04 206,01 198,15
BG7 577 208,76 200,93 104,38 100,46 382,71 368,34
BG8 388 225,78 211,69 112,89 105,84 413,9 388,08
BG9 322 161,21 148,3 80,6 74,15 295,55 271,86
BG10 291 219,63 216,69 109,81 108,34 402,63 397,22

Forêt submontagnarde
                      Alt. (m)        Bt_Fay (t.ha-1)     Bt_Ch (t.ha-1)     Ct_Fay (t.ha-1)     Ct_Ch (t.ha-1)      CO2_Fay (t.ha-1)    CO2_Ch(t.ha-1) 

FD1 1585 207,29 307,08 103,64 153,53 380 562,98
FD2 1451 259,61 448,73 129,8 224,36 475,93 900,74
FD3 1392 171,63 257,94 85,81 128,97 314,65 472,89
FD4 1431 276,54 488,5 138,26 244,25 506,94 895,58
FD5 1246 171,41 337,98 85,7 168,99 295,57 619,64
FD6 1405 200,21 327,41 100,1 163,7 367,02 600,26
FD7 1345 166,16 254,42 83,08 127,21 304,61 466,44
FD8 1440 327,97 541,99 163,98 270,99 601,23 993,64

BG : Bangang, FD : Fonsimondi, Alt. : Altitude, Bt_Fay : Biomasse total Fayolle, Bt_Ch : Biomasse total Chave, Ct_Fay Carbone total 
Fayolle, Ct_Fay:  Carbone total Chave, CO2_Fay:  Dioxide de Carbone fayolle, CO2_Ch : Dioxide de Carbone Chave. 
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Post-hoc Bonferroni test carried out on the bio-
mass, carbon and carbon dioxide values of the two 
forests according to the Fayolle and Chave equations 
at a significance level of 5% (Fig. 3) shows no signif-
icant difference in the biomass values originated from 
the two equations, not only within the Fossimondi 
submontane and Bangang mid-altitude forests but also 
between the two forests. Thesame remarks were made 
for the quantities of carbon stored by these plants and 
amounts of CO2.

In this study, two allometric equations devel-
oped from trees in the tropical zone were used. 
The difference between these equations was in the 
predictors (diameter and height), one of which con-
sider diameter and the other, the two predictors in 
order to better understand the biomass and carbon 
values from the stands studied. The mean values of 
above-ground biomass obtained in the mid-altitude 
forest of Bangang (150 and 155 t. ha-1 respectively 
for the equations of Fayolle et al. (2018) and Chave 
et al. (2014) and those of the submontane forest of 
Fosimondi (165 and 292 t. ha-1 respectively for the 
equations of Fayolle et al. (2018) and Chave et al. 
(2014) showed no significant difference despite dis-
similarities in the specific composition and structure 

of these forests. Depending on the equation used, we 
would have expected the above-ground biomasses 
from the Chave et al. (2014) equations to be higher 
because it incorporates both tree diameter and height. 
Indeed, the work of Chave et al. (2005) revealed that 
biomass equations incorporating height are the most 
likely to be accurate. In the case of this study, it can 
be assumed that height had very little influence on 
above ground biomass quantities. The results obtained 
in the mid-altitude forest are lower than the average 
estimates of above-ground biomass observed in 
African tropical forests at the same altitude, that is 
282 and 252 t. ha-1 respectively (Imani et al. 2017, 
Sainge et al. 2020). The biomasses obtained in the 
submontane forest of Fosimondi are lower than those 
of Imani et al. (2017), which are 365 t. ha-1, but close 
to the 258 t. ha-1 observed by Sainge et al. (2020) in 
the same type of forest in Central Africa. All these 
contrasts in mean above ground biomass are linked 
to the size of the sample and also to the allometric 
equation models chosen.

Influence of altitude on biomass and structural 
parameters

The biomass obtained from the Fayolle equation was 

Fig. 3. Comparison of biomass, carbon and CO2 according to the 
type of equation and forest. BG: Bangang, FD: Fonsimondi, Alt. 
: Altitude, Bt_Fay : Total biomass Fayolle, Bt_Ch : Total biomass 
Chave, Ct_Fay: Total carbon Fayolle, Ct_Fay: Total carbon Chave,-
CO2_Fay: Carbon dioxide Fayolle,CO2_Ch: Carbon dioxide Chave.
* Bars with the same letter are not significantly different from each
    other according to the analysis of variance (Bonferroni correction,
   p=0.05).
* Bars with a different letter show a significant difference between 
    them according to the analysis of variance (Bonferroni correction,
   P<0.01).
* Bars with more than one letter did not differ significantly from
   bars with one, two or more letters in the analysis of variance 
   (Bonferroni correction, p<0.01).  

Fig. 4. Correlation circle of the principal component analysis 
(PCA; first two axes) of the variables characterizing the study 
plots established in the submontane forest of Fosimondi and the 
mid-altitude forest of Bangang. The variables are altitude (Alt), 
total biomass (Bt_Fay), average specific wood density (DMB), 
stem density (De) and basal area (ST).
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used for the principal component analysis (PCA) 
because it is an equation developed on the basis of 
diameter; this parameter is easily measurable in the 
field and is therefore very powerful in predicting bio-
mass. The PCA carried out on the basis of biomass, 
altitude and stand structural parameters revealed two 
main axes explaining 74% of the total variance (Fig. 
4). Axis 1 (51.65% inertia) shows a strong positive 
correlation not only between basal area and biomass 
(Pearson; R = 0.98) but also between individual den-
sity and biomass (Pearson; R =0.51). There is also a 
positive relationship between altitude and these three 
variables (individual density, basal area and biomass), 
although it is weak. Axis 2 (22.34% inertia) shows 
a weak negative correlation between mean wood 
density and altitude (Pearson; R =-0.26).

Analysis of the linear relationship between the 
various variables and altitude shows an increase in 
structural parameters (basal area, density) and total 
biomass with altitude. However, the coefficients of 
determination values are very low (Figs. 5A, B-C), 
with R2 = 0.132, 0.181 and 0.085 for basal area, 
density and total biomass respectively. This shows 
that increasing altitude contributes to an increase of 
13.2%, 18.1% and 8.5% respectively in each value of 
basal area, individual density and total stand biomass.

On the other hand, a decrease in the average 
density of the wood was noted with increasing alti-
tude (R2= -0.068, Fig. 5D), i.e. a decrease of 6.8% 
in the value of the average density of the wood with 
increasing altitude. In general, all these parameters 

Fig. 5. Linear regressions showing the effect of altitude on basal area (A), individual density (B), total biomass (C) and mean wood 
density (D) on the study plots.
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varied very little with increasing altitude.

Overall biomass increased with altitude in the 
forests studied. The increase in biomass observed with 
increasing altitude in this study is similar to the re-
sults obtained by some researchers in tropical forests 
(Alves et al. 2010, Marshall et al. 2012). However, 
the results are contrary to previous work carried out 
in other mountain forests in Cameroon (Gomadje 
et al. 2017, Sainge et al. 2020) and in other regions 
(Leuschner et al. 2013, Girardin et al. 2014), which 
observed either a decrease in biomass quantities with 
altitude or a bell-shaped curve (Imani et al. 2017). 
According to these authors, this decrease in biomass 
with altitude is linked to the supply of nutrients from 
the soil, which becomes limited as altitude increas-
es in relation to plant demand, thus limiting forest 
productivity and biomass accumulation. Moreover, 
some studies have shown that there is no significant 
relationship between biomass and altitude (Dossa 
et al. 2013). In general, the microclimate and local 
topographical factors of each site would control the 

abundance and size of trees in these stands, which 
would be at the origin of the differences observed in 
biomass and carbon in each forest.

Biomasses and carbon stock total obtained in 
the mid-altitude and submontane forest according to 
the two equations used showed no significant differ-
ence. These results are similar to those of Sainge et 
al. (2020) carried out along an altitudinal gradient in 
the tropical forests of Cameroon, that is 252.6 t.ha-1 
and 126.3 t.ha-1 respectively for biomass and carbon 
at mid-altitude, then 258 t.ha-1 and 129 t.ha-1 respec-
tively for biomass and carbon in submontane forests. 
Imani et al. (2017) found biomass values of 282.2 
t. ha-1, 267.1 t. ha-1 and 127.7 t. ha-1 in mid-altitude, 
submontane and montane forests respectively. For 
these two types of stands studied, we can assume 
that, unlike the montane forest, species growth may 
not yet be limited by the drop in temperature, poor 
soil quality and exposure (Moser et al. 2011, Marshall 
et al. 2012); in addition, photosynthesis is not yet 
inhibited by low air temperatures.

Table 2.  Species with the highest biomass, carbon and carbon dioxide values in the two forests.

Bangang
                                                      Bt_Fay (t.ha-1)   Ct_Fay (t.ha-1)  CO2_Fay (t.ha-1)   Bt_Ch (t .ha-1)   Ct_Ch (t .ha-1)  CO2_Ch (t.ha-1)

Napoleonaea egertonii  122,31 61,15 224,22 96,05 48,02 176,08
Lophira alata  111,94 55,96 205,21 217,2 108,6 398,16
Irvingia gabonensis  99,03 49,51 181,51 124,45 62,22 228,14
Strombosia pustulata  84,19 42,09 154,34 70,13 35,06 128,57
Pycnanthus angolensis  79,23 39,61 145,26 85,36 42,68 156,49
Pentadesma grandifolia 75,34 37,62 138,12 107,75 53,37 195,68
Chrysophyllum perpulchrum  69,92 34,96 128,2 97,11 48,55 178,02
Piptadeniastrum africanum  65,26 32,62 119,64 101,29 50,64 185,67
Canarium sp. 59,52 29,76 109,11 67,63 33,81 124
Trichilia rubescens  51,75 25,87 94,86 / / /
Syzygium guineense / / / 51,53 25,76 94,46

Fosimondi
                                                     Bt_Fay (t.ha-1)   Ct_Fay (t.ha-1)  CO2_Fay (t.ha-1)   Bt_Ch (t .ha-1)   Ct_Ch (t .ha-1)  CO2_Ch (t.ha-1)
Santiria trimeria 212,34 106,17 389,26 354,3 177,15 649,53
Cola anomala 106,05 53,02 194,42 177,47 88,73 325,36
Uvariodendron connivens 91,8 45,89 168,3 169,76 84,88 311,23
Leptaulus daphnoides 83,27 41,65 152,74 109,48 54,74 200,7
Cola verticillata 79,95 39,97 146,58 170,77 85,36 313,07
Tabernamontana sp. 63,34 31,66 116,13 97,08 48,54 177,97
Drypetes molunduana 41,29 20,64 75,7 / / /
Syzygium guineense 38,85 19,42 71,22 66,12 33,06 121,22
Placodiscus angustifolius  38,24 19,12 70,12 57,4 28,69 105,23
Hypodaphnis zenkeri  37,89 18,94 69,47 116,77 58,38 214,09
Maesobotrya barteri  / / / 67,94 33,97 124,56

BG : Bangang, FD : Fonsimondi, Bt_Fay : Biomasse total Fayolle, Bt_Ch : Biomasse total Chave, Ct_Fay: Carbone to-
tal Fayolle, Ct_Fay: Carbone total Chave, CO2_Fay: Dioxide de Carbone Fayolle, CO2_Ch : Dioxide de Carbone Chave.                                                                                                   
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Table 3. Proportion (%) of biomass by diameter class.

                             [10-30]         [30-70]  ≥ 70         Total

FD-Bt_Ch 27,1  29,3  41,0  33,9
FD-Bt_Fay 27,6  17,2  16,9 19,9 
BG-Bt_Ch 18,9  27,8  22,9 23,2
BG-Bt_Fay 26,3 25,7  19,2  23,0 
Total 100  100  100 100 

BG: Bangang, FD: Fonsimondi, Bt_Fay: Total biomass Fayolle, 
Bt_Ch: Total biomass Chave.

Biomass, carbon and CO2 values by species in the 
two forests

In accordance with the allometric equations, the for-
mulae of Fayolle et al. (2018) and Chave et al. (2014) 
were used to obtain quantities of Biomass, Carbon 
and CO2 that varied from one species to another, but 
above all according to each forest (Table 2). In the 
mid-altitude forest of Bangang, the highest values 
were observed in Lophira alata using the Chave equa-
tion (i.e. 217.20 t.ha-1, 108.6 t.ha-1 and 398.16 t.ha-1 
respectively for biomass, carbon and CO2) whereas 
the Fayolle equation gave  Napoleonaea egertonii  
(122.31, 61.15 and 224.22 t.ha-1 respectively for bio-
mass, carbon and CO2). In the Fosimondi sumontane 
forest, Santiria trimeria showed the highest values 
for both equations, but the most notable values were 
obtained from the Chave equation (354.30, 177.15 
and 649.53 t. ha-1 respectively for biomass, carbon 
and CO2). This species is followed by Cola anomala, 
which again recorded the highest values using the 
Chave equation (including 177.47, 88.73 and 325.36 
t. ha-1 respectively for biomass, carbon and CO2).

In this study, the species with the highest quan-
tities of biomass and carbon in the mid-altitude 
forest were different from those in the submontane 
forest. This spatial variability in biomass and carbon 
observed at the specific level can be explained by the 
physico-chemical nature of the soil (Gourlet-Fleury 
et al. 2011, Bocko et al. 2017), rainfall and the eco-
logical niche of each species. Indeed, several authors 
have revealed that soil fertility not only controls 
species composition, but also explains the differences 
between biotopes through natural selection linked to 
species adaptation (Laurence et al. 1999, Jaffré and 
Veillon 1990). In addition, this floristic composition, 
through wood density, is an important explanatory 
variable for biomass variation (Gourlet-Fleury et al. 
2011, Loubota et al. 2018).

Distribution of biomass by diameter class

The biomasses from all the individuals were classified 
by stratum according to the size of each diameter. 
Analysis of the Chi2 test carried out to see whether 
diameter classes have an influence on biomass quan-
tities shows that biomass values are related to the 

different diameter classes, regardless of the type of 
allometric equation chosen (Chi2 =12.59, p< 0.0001, 
α =0.05). For example, in the Fosimondi submontane 
forest, the large tree diameter class (≥ 70 cm) contrib-
uted 41% to biomass accumulation according to the 
Chave equation, whereas in the Bangang mid-altitude 
forest, it contributed 22.9% according to the same 
equation (Table 3).

The contributions of the other diameter classes 
are almost similar in the two forests: 27.1% and 
29.3% respectively for the (10-30 cm and 30-70 cm) 
classes in the submontane forest. In the Bangang 
mid-altitude forest, the (10-30 cm and 30-70 cm) 
classes accounted for 18.9% and 27.8% respectively. 
In contrast, the Fayolle equation showed biomass 
proportions that varied very little within the diameter 
classes but decreased from the lower to the upper 
strata. The fluctuations in biomass per stratum can 
be seen in Fig. 6.

The distribution of biomass by diameter class 
showed a large contribution from diameter classes 
≥70 cm. This result is in line with those obtained 

Fig. 6.  Change in biomass by diameter class.
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in other tropical forests, which have shown that in 
these forests, individuals in this diameter category 
most often contribute more than 30% to biomass 
accumulation (Bastin et al. 2015, Gomadje et al. 
2017, Loubota et al. 2018). Thus, the density of trees 
over 70 cm in diameter would explain the variation 
in biomass between and within continents (Slik et al. 
2013). According to some authors, these large trees 
could be more easily monitored using remote sensing 
techniques and could then be an interesting predictor 
of large-scale biomass (Loubota et al. 2018, Meyer 
et al. 2018).

CONCLUSION

This work has enabled us to understand the evolu-
tion of biomass and carbon stored by tropical forests 
along the western slopes of the Monts Bamboutos in 
Cameroon. Although the increase in biomass and cer-
tain structural parameters with altitude was not very 
significant, a decrease in the average density of wood 
with increasing altitude was observed. Depending on 
the type of equation used, there were no significant 
differences in biomass or carbon values. The upper 
stratum represented by the large trees made a major 
contribution to biomass formation. This study high-
lights the role of tropical forests in purifying the bio-
sphere through the quantities of carbon dioxide they 
store. The dense forest of the Bamboutos Mountains 
is a carbon sink and should be taken into consideration 
in the program to implement REDD+ mechanisms.
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