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ABSTRACT

Modelling and forecasting of the sale price of an ag-
ricultural commodity in the presence of volatility is 
the focus of this work. Effort has been made to build 
an efficient forecasting model using the observed data 
on monthly onion prices for the period of January, 
2003 to December, 2020. Non-stationarity and vol-
atility are apparent in the price data observed in the 
commodity market as these prices are influenced by 
increasing demand, financial crisis, cross-sectional 
price variability. Considering all the above condi-
tions, it is found that AR(1)-GARCH(1,1) model is 
suitable for forecasting the volatility present in the 
observed data set. The forecast of price as well as the 
conditional variance suggest that the volatility would 
be apparent and remain constant for upto June 2024. 
Forecast values of price of onion show a steadily 
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decreasing trend which indicates that the price for a 
period of 24-months for the season 2023-24 shows 
some degree of stability. Thus, the onion cultivators 
of Bolpur market may earn more revenue by selling 
their produce as early as possible so that they can 
avoid the extra expense which will incur in storing 
the same for a long period.

Keywords   Conditional variance, Forecasting model, 
GARCH, Stationarity, Volatility clustering.
          

INTRODUCTION

Farmers’ choice of crops to be cultivated depends on 
several factors like its demand, productivity, profit-
ability, marketability and to grow farmers’ interest in 
cultivating any crop, the long-term movement or trend 
of demand and profit, market condition etc. should be 
well studied. However, there are commodities where 
the price of the commodity varies over time and 
season. This fluctuation is described as volatility in 
the economic term. In general, high volatility is very 
apparent in the present financial market, especially 
in the case of daily market price data of different 
commodities. The reason behind such volatility can 
be found in the complications of storability, season-
ality, transportation facility, natural calamity, price 
shocks announcements of price subsidies or trading 
activities. Volatility modelling is of great interest to 
most financial analysts and researchers. The problem 
of price variability modelling mainly focuses on the 
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analysis of patterns in the data and when volatility is 
present, determination of pattern becomes different. 
The basic strategy behind the evaluation of price in-
stability would be based on the study of movements 
and dynamics of price data in the current market 
environment.

Two basic reasons to study the price volatility in 
a time series data are the following (i) To study the 
nature of fluctuations in price leading to non-station-
arity which cannot be handled using the differencing 
techniques or transformations (ii) To predict the time 
series data with a predetermined level of confidence. 
It is worth mentioning here that the time points 
where the magnitude of variance of the time series 
data changes do not occur randomly across the data, 
instead, a degree of autocorrelation among those val-
ues can be seen. First, it was studied by Mandelbrot 
(1963) and Black & Cox (1973). Later, Engle & Yoo 
(1987) developed the modern approach to handle vol-
atility in price data by using autoregressive condition-
al heteroscedastic (ARCH) model. Then, this ARCH 
model was further generalized by Bollerslev (1987) 
and named as generalized autoregressive conditional 
heteroscedastic (GARCH) model. GARCH models 
assume the time varying conditional variance in the 
response variable. The GARCH models developed 
by Bollerslev have been found to have significant 
predictive power when it deals with the intra-day 
data (Val et al. 2014). In the present work modelling 
and forecasting the onion price under the presence 
of price volatility using GARCH model has been 
considered. For that purpose, the data on minimum 
price for onion from the Directorate of Marketing 
& Inspection (DMI) has been used. The data set 
comprises of monthly average price of onion from 
January 2003 to December 2020 for Bolpur market, 
West Bengal. The primary focus of this study is to 
fit an appropriate model from the GARCH family 
that can capture the volatility present in the data and 
can predict the onion’s future prices. Keeping this 
objective in mind, the paper specifically investigates 
the following research questions:

How good the AR-GARCH model is for pre-
dicting the onion price observed at Bolpur market in 
comparison to other models.

Is it beneficial to use the output of the model 

selected for hedging against risks by the onion pro-
ducers?

MATERIALS AND METHODS

In the present study the time series data contains 234 
observations on average monthly price of onion for 
the period of January, 2003 to June, 2022. These data 
points are recorded for Bolpur market of West Bengal.

ARIMA model specification

A time series forecasting model works nicely for 
the purpose of prediction if the series is stationary. 
Stationary times series should be used in ARMA (p, 
q) or ARIMA (p, d, q) models. If it is not stationary, 
then it should be adjusted by taking difference of 
the actual series. First difference value, in terms of 
backshift operator (B) can be written as, Yt-1 = BYt .

For “p” AR components, “q” MA components and “d 
” number of differences taken to make the series sta-
tionary, the ARIMA (p, d, q) model can be expressed 
in the form of (1) (Nath & Bhattacharya 2022).
        p                                                                 q

(1-∑j =1 ϕj B
j) (1-B)d Yt+ (1+∑i=1 θi B

i ) εt,          (1)

Where, ϕj = the coefficient of AR process at lag j, θi  
= the coefficient of MA component at lag i, B = The 
backshift operator,  Yt  = the actual value of the series 
at time t, εt  = White noise error at time t.

Test for stationarity

In literature, basically, three tests viz., Augmented 
Dickey Fuller (ADF), Kwiatkowski, Phillips, Schmidt 
and Shin (KPSS) and Phillips Perron (PP) are widely 
used for testing the stationarity or presence of unit root 
in time series. In the present work, KPSS and PP tests 
have been considered for the same, simultaneously 
which are given below:

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 
test

Taking the null hypothesis (H0) as a stationary process 
and the unit root as an alternative (H1) is in accordance 
with a conservative testing strategy. If we then reject 
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the null hypothesis, we can be confident that the series 
indeed has a unit root. Therefore, if the results of the 
tests above indicate a unit root but the result of the 
KPSS test indicates a stationary process, one should 
be cautious and opt for the latter result H0 : σ

2 = 0.

Under the H0 of et ~ NIID (0, σ2)” , the test statistic 
is defined in (2).

                                                         T

                                (∑t = 1 St
2 ) 

                     LM = –––––––––                              (2)
                                     σe

2

            ˄             T                     tWhere σe
2 = ∑t=1 e

2
t St = ∑i =1 ei,, t =1.......T  and et  are the 

                              T
residuals from the regression of yt  on a time trend (t).

Phillips perron (PP) test

The phillips perron test is a unit root test. Kwiatkow-
ski et al. (1992) reported that the PP test performs 
worse in finite samples than the ADF test and the 
advantage of the PP test is that it is nonparametric 
test, i.e., it does not require to select the level of serial 
correlation as in ADF. It rather takes the same estima-
tion scheme as in ADF test but corrects the statistic 
to conduct for autocorrelations and heteroscedasticity 
(Phillips & Perron (1988). 

Test for presence of ARCH effect

To test the presence of heteroscedasticity we need 
the residuals, which can be obtained by means of 
an appropriate ARIMA (p, d, q) model. Under this 
test, H0: heteroscedasticity is not present against H1: 
heteroscedasticity is present, have been considered. 
The test statistic has been taken as, “ARCH-LM = 
nR2 ~χ(p)

2 , where n is the sample size and R2 is the 
coefficient of determination obtained by squared 
residuals regressed on constant and its lagged values 
up to order p, as given in (3). The decision rule is that, 
reject H0, if the observed value of the statistic is more 
than the critical χ(p)

2 value, otherwise do not reject.

                              p             2
           et

2 = δ0̂ +  ∑i =1δi et-i + vt,                            (3)                                 

Where, et
2 = squared residual at time t, δi  = parameter 

estimates of regression model, vt = error term.

Test for the normality of residuals

The test for normality of the residuals has been per-
formed by using normal Q-Q plot (Nath et al. 2020).
 
ARCH and GARCH model specifications

Let, yt  be the onion price at time t, then the price 
(yt) can be modelled as, yt = μt + εt , where μt  can be 
obtained by using (1).

Now, εt = yt - μt ,

Let, εt be modelled by using” GARCH (p, q).
                                                               q                  

2Here, εt= √ htηt and (√(ht)
2  = ht = ω + ∑i =1 αt   εt -i +

∑
p

j =1 βj (√(ht-j )
2, where ηt ~ i.i.d (0,1).

                                                    
 q                 

2             por it can be written as, ht = ω + ∑i =1
q αi εt-i +∑j = 1

βj ht-j .                                                                    (4)

Where, “ω (intercept) > 0; αi ≥ 0  for i = 1,2,…,q, β j 
≥ 0  for j =1, 2,…,p, ht  = conditional variance, 
∑

q

i =1
  αi ε2

t-i
  = ARCH effect and ∑j

p
=1 βj (√ ht=j)

2 = 
GARCH effect. If ∑i αi+∑j βj <1, then the specified 
GARCH (p, q) model is covariance stationary, oth-
erwise non-stationary.

In this notation αi  and βj  are the parameters of 
GARCH model. It is to be noted that if  ht  is ARMA, 
then √(ht ) is GARCH. The model given in (4) is the 
generalized version of ARCH model proposed by 
Engle & Yoo (1987) and known as a generalized au-
toregressive conditionally heteroscedastic (GARCH) 
model developed by Bollerslev (1987).

Here we have studied the problem of time vary-
ing residual variance which is present in the observed 
data with the help of ARCH (q) and GARCH (p, q) 
models. The GARCH model, which is an extended 
version of the ARCH model that takes care of the 
inclusion of lags of conditional variances, is used to 
capture the conditional variance present in the model.

Model fitting and selection criteria

First, the two orders, i.e., p and q of GARCH (p, q) 
model are to be decided for fitting a GARCH model. 
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In this case, the ACF and PACF plots of the original 
and squared series of the obtained residuals are to be 
examined thoroughly. The values of p and q orders for 
building a candidate model can be decided in a similar 
way, as it is done in ARMA (p, q) model fitting. The 
following point is to be considered while deciding the 
possible orders of the candidate models:

If the original series of residuals is found to 
be white noise, then the series of squared residuals 
needs to be examined and the values of p and q of 
the GARCH model are then decided by looking at 
ACF and PACF plot of the squared residuals series.

One among the four model selection criteria viz., 
AIC, BIC, Shibata, and Hannan-Quinn can be used 
for selecting the best fit model. However, all these 
criteria, simultaneously have been considered for the 
selection of GARCH models and the selected models 
are then cross validated by using validation data set 
in the form of absolute percentage error (APE) and 
mean absolute percentage error (MAPE).

RESULTS AND DISCUSSION

The whole data set (234 observations) is divided 
into two parts viz., training and validation sets. The 
training set has 214 observations and the remaining 
20 observations have been kept for cross validation 
of the fitted models under the validation data set. 
Models were built by using training data set and cross 
validated by using validation data set. To check the 
presence of ARCH effect, all the data points have 
been used. The accuracy of the fitted models has been 
checked by obtaining the variation between forecast 
and actual values. The extent of these variations is 
determined by means of APE and MAPE.

Model fitting

Data on average monthly price of onion for Bolpur 

market are used for forecasting the price for future 
time points. In this case, the ARIMA models are 
fitted to obtain the residuals and these residuals are 
then tested for possible presence of ARCH effect. 
The stationarity of the actual series is tested by using 
KPSS and PP tests. In the case of actual series, the 
KPSS and PP test statistics are found to be signif-
icant indicating the non-stationarity of the actual 
series. So, the first seasonal difference of the actual 
series is obtained and tested. It is observed that the 
differenced series (D = 1) has non-significant KPSS 
and significant PP test statistics which indicate the 
stationarity of the seasonally differenced series. The 
overall trend is then tested and both KPSS and PP 
test statistics are evident of presence of trend in the 
series (Table 1). Here seasonality along with trend 
is present in the differenced series and they require 
critical attention which can be done by means of 
seasonal ARIMA models.

The plot of actual series reflects that there is an 
increasing trend Fig.1(a), thus the first difference of 
the actual series is obtained and plotted. The plot of 
differenced (D =1 and d = 1) series Fig.1(b). shows a 
pattern of constant variation which indicates that this 
series has become stationary in mean and variance.

This stationary series is generally used for taking 
the decision about the possible orders of ARIMA (p, 
d, q) (P, D, Q)[S] models. From the PACF plot of the 
stationary series Fig. 2(a), it is observed that all of the 
seasonal lags i.e., lag 12, 24 and 36 have significant 
spikes. Hence, the order of seasonal AR component 
is taken as, P = 1, 2 and 3. The first non-seasonal lag 
of PACF plot is found to be significant indicating the 
possible values of non-seasonal AR component as, 
p = 1. Now, the seasonal order of MA components 
is decided by looking at the ACF plot of the station-
ary series Fig. 2(b). In this case, first seasonal and 
non-seasonal lags show a significant spike which 

Table 1. Test for stationarity of the series.

                  Series                                                       KPSS test                                                                  PP test
                                                       Statistic value           lag            p-value                Statistic value             lag                p-value

     Actual 2.1894 4 0.01 -106.690 4 0.01
     Differenced (D = 1) 0.0307 4 0.10 -107.16 4 0.01
     Differenced (d = 1) 0.0137 4 0.10 -278.30 4 0.01 



83

 

Fig. 1(a).  Plot of actual values of the price of onion observed in Bolpur market.  Fig. 1(b). Plot of lagged series of the price of onion 
observed in Bolpur market.

                                  Fig. 2(a).  PACF plot of stationary.                                Fig. 2(b).  ACF plot of stationary series.

indicate the possible values of the orders Q and q as, 
Q = 1, q = 1. Using these possible values of p, P, q 
and Q, six seasonal ARIMA models can be formed but 
we have considered only four models viz., ARIMA 
(1,1,1) (1,1,1)[12], ARIMA (1,1,1) (1,1,2)[12], ARIMA 
(1,1,1) (2,1,1)[12] and ARIMA (1,1,1) (2,1,2)[12].

The candidate seasonal ARIMA models are fit-
ted to the observed data set and their respective AIC 
values are obtained and reported.

Table 2.  Fitted seasonal ARIMA models and their AIC values.

Sl. No.                  Model                    Number of            AIC
                                                           parameters

 1 ARIMA (1,1,1) (1,1,1)[12] 4 3524.73
 2 ARIMA (1,1,1) (1,1,2)[12] 5 3525.69
 3 ARIMA (1,1,1) (2,1,1)[12] 5 3526.45
 4 ARIMA (1,1,1) (2,1,2)[12] 6 3527.75

The lowest value of AIC with the least number of 
parameters is observed for ARIMA(1,1,1) (1,1,1)[12] 
model (Table 2). Thus, this model can be considered 
as suitable seasonal ARIMA model for forecasting 
the price of onion. Also, the suitability of the fitted 
model is in question, and it has been checked by using 
Box-Ljung test (Table 3). In fact, the assumption of 
homoscedasticity (by means of ARCH-LM test) has 
also been checked because the price of agricultural 
commodities like onion shows too much seasonal 
fluctuations. Here, the ARCH effect is tested by using 

Table 3.  Box-Ljung test for heteroscedasticity.

                   Model                   Statistic value       df       p-value 

 ARIMA (1,1,1) (1,1,1)[12] 41.47 1 0.0001**
 ARIMA (1,1,1) (1,1,2)[12] 44.60 1 0.0001**
 ARIMA (1,1,1) (2,1,1)[12] 43.54 1 0.0001**
 ARIMA (1,1,1) (2,1,2)[12] 41.94 1 0.0001** 
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observed residuals for all the fitted seasonal ARIMA 
models (Table 3).

For all the fitted seasonal ARIMA models, the 
Ljung-Box statistic is found to be significant indi-
cating the time varying variance of the observed 
residuals (Table 3).

In the case of all the seasonal ARIMA models, the 
null hypothesis about homoscedasticity in ARCH-LM 
test is rejected at 1% level of significance, indicating 

Fig. 3 (a). ACF plot of residuals obtained in fitted ARIMA model.  Fig. 3(b). PACF plot of residuals obtained in fitted ARIMA model.

Fig. 4(a).  PACF plot of squared residuals obtained in fitted ARIMA model.  Fig. 4(b).  ACF plot of squared residuals obtained in fitted 
ARIMA model.

that the residuals are heteroscedastic for all the fitted 
ARIMA models (Table 4). So, to fit a model which can 
capture this phenomenon, a model from ARCH and 
GARCH family has been tried and tested as below.

The ACF and PACF plots of the residuals ob-
tained in ARIMA (1,1,1) (1,1,1)[12] model reveals 
that this series is white noise Figs. 3(a–b) as there is 
no initial lags with significant spikes in these plots. 
So, the ACF and PACF plots of the series of squared 
residuals are used for deciding the values of p and q 

Table 4.  ARCH-LM test for presence of ARCH effect.

                   Model                   Statistic value       df       p-value 

 ARIMA (1,1,1) (1,1,1)[12] 55.52 12 0.0001**
 ARIMA (1,1,1) (1,1,2)[12] 57.50 12 0.0001**
 ARIMA (1,1,1) (2,1,1)[12] 55.92 12 0.0001**
 ARIMA (1,1,1) (2,1,2)[12] 54.14 12 0.0001** 

Table 5. Values of information criteria for the fitted GARCH 
models.

                          Model                                         AIC

 AR(1)-GARCH(1,1) 15.494
 AR(1)-GARCH(1,2) 15.482
 AR(1)-GARCH(2,1) 15.502
 AR(1)-GARCH(2,2) 15.492
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of GARCH (p, q) model.

The PACF and ACF plots of the squared resid-
uals suggest that the possible values of p and q as, 
p = 1, 2 and q = 1, 2, respectively as initial 1 and 2 
Figs. 4(a–b) lags have significant spikes. Also, for 
the sake of simplicity, the order of the mean model 
specified in (1) has been taken to be, p = 1 and q 
= 0 i.e., AR(1) model. Using these possible values 
of p and q four GARCH models are formed viz., 
AR(1)-GARCH(1,1), AR(1)-GARCH(1,2), AR(1)-
GARCH(2,1) and AR(1)-GARCH(2,2). AIC, as 
model selection criteria has been considered.

The lowest value of AIC is observed under 
AR(1)-GARCH(1,2) model but it can be noted that 
the difference between the AIC values of model is 
less than 1%, which can be neglected by considering 
parsimonious model with less number of parameters 
to be estimated. So, AR(1)-GARCH(1,1) model is 
considered here for forecasting the series and its con-
ditional variance (Table 5). These models are further 

Table 6.  MAPE of different tried models (with validation data set).

Time          AR(1)-            AR(1)-             AR(1)-            AR(1)-
            GARCH(1,1)  GARCH(1,2)  GARCH(2,1) GARCH(2,2)
                   APE                APE                APE                 APE

Jul-20 20.76 20.71 20.53 20.76
Aug-20 29.33 29.16 28.94 29.33
Sep-20 61.16 61.04 60.88 61.16
Oct-20 73.91 73.78 73.65 73.91
Nov-20 21.74 21.26 20.92 21.74
Dec-20 69.40 69.15 69.02 69.40
Jan-21 28.61 27.90 27.57 28.61
Feb-21 29.64 28.86 28.61 29.64
Mar-21 46.86 46.27 46.07 46.86
Apr-21 37.68 36.92 36.69 37.68
May-21 33.75 32.88 32.63 33.75
Jun-21 32.40 31.44 31.25 32.40
Jul-21 32.90 31.94 31.75 32.90
Aug-21 32.20 31.23 31.04 32.20
Sep-21 48.08 47.33 47.18 48.08
Oct-21 64.64 64.10 63.99 64.64
Nov-21 66.28 65.73 65.67 66.28
Dec-21 67.96 67.46 67.37 67.96
Jan-22 67.05 66.54 66.45 67.05
Feb-22 66.33 65.77 65.71 66.33
Mar-22 56.53 55.81 55.73 56.53
Apr-22 26.51 25.30 25.15 26.51
May-22 20.89 19.59 19.43 20.89
Jun-22 27.93 26.74 26.60 27.93
 MAPE 44.27 43.62 43.45 44.27 

cross validated by using validation data set which 
contains the data starting from July 2020 to June 2022. 
APEs and MAPEs are obtained for these models. 

It is noteworthy that AR(1)-GARCH(2,1) model 
has the lowest MAPE but the difference between 
the MAPEs of AR(1)-GARCH(2,1) and AR(1)-
GARCH(1,1) models is less than 1%, which can 
be neglected by considering parsimonious model 
selection criteria. Thus, AR(1)-GARCH(1,1) model 
has been considered for forecasting the price in the 
presence of volatility (Table 6). All the estimates of 
the parameters are found to be significant at 1% lev-
el of significance (Table 7). Thus, this model is the 
suitable model for forecasting the price of onion for 
Bolpur market in the presence of volatility. 

The best fit model i.e., AR(1)-GARCH (1,1) can 
mathematically be expressed as given in (5).

                                      
2          ht = 968.51 + 0.1543 εt-1 + 0.8447 ht-1 .

It indicates that the price of onion is too volatile. The 
significant positive intercept of the model reveals 
that if the orders of p and q terms are zero, then the 
volatility will be 968.51 units. Also, it is to be noted 
that the effect of lagged variance and error terms are 
positive.

The estimated mean equation of the fitted AR(1)-
GARCH(1,1) model (i.e., AR(1) can mathematically 
be expressed as (6), ŷt = μ + ϕ1 yt -1, where, yt = differ-
enced series which is obtained as yt =Yt- Yt-1, where 
Yt =original value of the series at time t, ϕ1̂ = estimate 
of the coefficient of the first AR component. So, the 
equation with estimates of the coefficients is given by

Table 7. Parameter estimates of components of AR(1)-GARCH 
(1,1) model.

Parameter     Estimate              Standard       t-value      p-value
                                                    error

     μ 1066.5393 131.1900 8.1297 0.0001**
     ϕ1  0.7900 0.0374 21.1081 0.0001**
     ω  968.5100 186.5600 5.1914 0.0001**
     α1  0.1543 0.0232 6.6523 0.0001**
     β1 0.8447 0.0245 34.5223 0.0001** 
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ŷt = μ + ϕ̂1 yt -1

ŷt = 255.7854 + 0.9480 yt -1

Yt - Yt -1 = 255.7854 + 0.9480×(Yt -1- Yt -2)
                                  (replacing yt withYt - Yt-1)
Yt = 255.7854 + (1 + 0.9480) Yt -1- 0.9480Yt -2

Yt = 255.7854 +1.9480 Yt-1-0.9480Yt -2 

Residual analysis

Normality and serial correlation tests on residuals 
of AR(1)-GARCH (1,1)

Ljung-Box test and usual ACF and PACF plots of 
residuals have been considered here to test the serial 
correlation among the residuals of AR(1)-GARCH 
(1,1) model. It has been found that residuals are not 
serially correlated because the p-value of the Ljung-
Box Q statistic is more than 0.05 for which the null 
hypothesis about no-serial correlation cannot be re-
jected Fig. 5(a). None of the initial five lags in ACF 
and PACF plots show any significant spikes except 
some random spikes after 5th lag in both plots indi-
cating the absence of serial correlation Fig. 5 (b). In 
case of Normal Q-Q plot, most of the observations 
are falling on the middle line indicating a good fit of 
the model Fig. 5(c).

Forecast

The fitted model fulfils all the assumptions and fits 
the data well. So, this model has been considered for 
forecasting purposes.

Fig. 5 (a).  Probability of Box-Ljung test statistic. Fig. 5 (b).  ACF and PACF plots.  Fig. 5 (c).  Normal Q-Q plot.

Forecast of price and conditional variance

Considering the above situations and by using (6) 
and (7), the forecast of price (the mean series) along 
with volatility (the conditional variance) are ob-
tained for corresponding 12-months period starting 
from July 2022 to June 2023 (Table 8). The forecast 
values of the price show a steadily decreasing trend 
in the price of onion started from July 2022 to June 
2023.  

Table 8. Final forecast values obtained by using AR (1) - GARCH 
(1,1) model.

Time                                     Price (μt)                Volatility (ht )

July 2022 1356.00 576.90
August 2022 1295.00 577.50
September 2022 1247.00 578.00
October 2022 1209.00 578.60
November 2022 1179.00 579.10
December 2022 1156.00 579.70
January 2023 1137.00 580.20
February 2023 1122.00 580.70
March 2023 1111.00 581.30
April 2023 1101.00 581.80
May 2023 1094.00 582.40
June 2023 1088.00 582.90
July 2023 1084.00 583.40
August 2023 1080.00 584.00
September 2023 1077.00 584.50
October 2023 1075.00 585.00
November 2023 1073.00 585.60
December 2023 1072.00 586.10
January 2024 1071.00 586.60
February 2024 1070.00 587.20
March 2024 1069.00 587.70
April 2024 1069.00 588.20
May 2024 1068.00 588.80
June 2024 1068.00 589.30 
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The plot of the forecast values of price of onion is 
also obtained. The forecast values show a line which 
is declining towards the x-axis during the period 
of forecast. It indicates that the price will decrease 
during the months of forecast i.e., July 2022 to June, 
2024 (Fig. 6).  

During the period of forecast the conditional vari-
ance shows a line parallel to x-axis, which indicates 
that the conditional variance will remain constant in 
that period. It can also be said that the decreasing trend 

Fig. 6. Plot of forecast values obtained in fitted AR(1)-
GARCH(1,1) model.

Fig. 7. Plot of forecast values of conditional standard deviation 
(√(ht) obtained by AR(1)-GARCH(1,1) model.

Fig. 8.  Plot of volatility observed in AR(1)-GARCH (1,1) model.

in price of onion during the period of forecast will be 
followed by a constant conditional variance (Fig.7).          

Situation of volatility in the fitted model

The high values of residuals are followed by the high 
values of conditional variances (volatility) which 
indicates volatility clustering in the data (Fig. 8).

It can be noted that the price has a decreasing 
tendency with a constant conditional variance. In this 
situation, it will be profitable to sale the produce early 
as there is not much fluctuation in price.

CONCLUSION

After assessing the normality and testing the presence 
of volatility, it is found that AR(1)-GARCH(1,1) 
model is suitable for forecasting the volatility present 
in the observed data set on price of Onion at Bolpur 
market. The forecast of price as well as the conditional 
variance suggest that the volatility would be apparent 
and remain constant till June 2024. Forecast is also ac-
ceptable because the residuals of the fitted model are 
normally distributed without any serial correlation. 
Forecast values of the price of onion show a steadily 
decreasing trend which indicates that the price for 
a period of 24-months has some degree of stability. 
Considering these situations, the onion cultivators of 
Bolpur market should sale their produce to avoid the 
extra expenses in storage as price shows decreasing 
pattern in future.
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