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Abstract  Human induced persistent climate change 
has greatly affected the structure and functioning 
of  natural as well as man made ecosystems. Forest 
ecosystem functioning, vegetation patterns and dis-
tribution of species is largely affected by the climate. 
Further, climate change can critically affect frequency 
and patterns of forest disturbance events e.g. forest 
fires, exotic species, insects and pests outbreak, 
drought, windstorms, landslides and can significantly 
affect the forest health. Dendrochronology provides 
the basis for studying these events at different time 
scales in relation to the changing climate. It helps in 
accumulating data about forest growth trends, spe-
cies adaptation, physiological responses to stressed 
conditions and frequency and patterns of different 
disturbance events with respect to changes in cli-
mate. Analyzing this data can provide the basis for 
developing the better management plans for forests 

management under changing climate scenario and 
promote sustainable use of forest ecosystem.
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Introduction

Forests are the source of innumerable goods and ser-
vices to humanity. Humans have evolved alongside 
of the forest ecosystems. The people from almost all 
regions and especially from developing world are 
dependent forests for their livelihood and sustenance. 
The pressure on forest ecosystems has increased since  
this advent of the industrialized era (Brath et al. 
2015). This industrialization and urbanization have 
become the necessity to sustain the ever-increasing 
human population. High rates of industrialization 
has put immense pressure on air, water and land 
resources and have polluted all of them (Brath et al 
2015). The alarming amount of greenhouse gasses in 
the atmosphere is increasing the earth’s temperature 
and destroying the protective layer of ozone.

These atmospheric changes are resulting in ris-
ing air temperature and altered rainfall and snowfall 
patterns with changes in their timing, amount and 
interannual variability (IPCC 2013). Climate has a 
profound effect on vegetation patterns and is believed 
to be the most significant factor to determine the for-
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est ecosystem functioning and distribution of forest 
species (Solomon 1986, IPCC 1995, Kirschbaum 
et al. 1996). Forest are long-lived ecosystems and 
possibly sensitive to long-term climate vagaries due 
to a high-level of societal dependence on forests 
for sustenance and livelihood (Bernier and Schöne 
2009). The global temperature has risen by 0.078 0C 
and is further projected to rise from 0.3 to 4.8 0C by 
2090-2099 (Hansen et al. 2010, Priti et al. 2016). An 
increase in temperature (1-2 0C) less than the current 
projections may change the trend in forest productiv-
ity, species composition and biodiversity (Leemans 
and Eickhout 2004). The natural ecosystems have a 
significant effect of climate change on their struc-
ture and function as it can change frequency and 
pattern of biotic and abiotic events viz.  forest fires, 
exotic species, insects and pests outbreak, drought, 
windstorms, landslides (Dale et al. 2001). Changes 
in temperature and rainfall could lead to species 
distribution range shifts and even loss of habitat in 
case of some species (Malcolm et al. 2006, Coetzee 
et al. 2009, Anderegg et al. 2015a). However, forest 
species and ecosystems have records for resilience 
to adaptation, the magnitude of future changes will 
be beyond the adaptive capacity to avoid the loss of 
vital ecosystem services and functions and extinction 
of species locally (Seppälä 2009).

Although, the climate could have a positive 
effect at  some places and for some species due to 
increased temperature and growing season with 
CO2 fertilization effect, but projections are mostly 
negative (Keenam 2015). Warming in cold-humid 
areas triggers the tree growth due to the prolonged 
season (Cuny et al. 2014, Rossi et al. 2016) but in 
drier areas triggers a  physiological response against 
increased water demand to lower down hydraulic 
conductivity which results in decreased production, 
poor carbohydrate allocation for structural growth and 
tree mortality (Adams et al. 2017). Climate change 
effect has observed in vegetation distribution range 
shifts (Kelly and Goulden 2008, Lenoir et al. 2010) 
and plant mortalities due to drought and heat (Allen 
et al. 2010). The effects are further intensified due to  
anthropogenic activities viz. increasing O3 concentra-
tion at low altitude, deposition of N pollutants, acci-
dental introduction of exotic pests, habitat destruction 
and other disturbances (Bernier and Schöne 2009).  

Tidal freshwater forests being replaced by the tidal 
salt water forests (mangroves) due to sea level rise 
in coastal reaches of sub-tropics (Doyle et al. 2010, 
Di Nitto et al. 2014).

Sustainable management of forests involves 
baseline information related to growth pattern, age 
class distribution, reproduction rate and endurance 
of tree species under exploitation (Groenendijk et 
al. 2014). Permanent plots are the principal source 
of this information with close monitoring of all the 
individuals. These permanent plots are scarce, es-
pecially in India and available at only a few places. 
Above this, making accurate estimates of growth 
rate and tree age is rather  difficult due to the avail-
ability of a few individuals and a short monitoring 
period (Groenendijk et al. 2014).Although, the large 
scale-forest inventories are available for some species 
and forest areas but they offer low temporal resolu-
tion (Rohner et al. 2016).  Analyzing effects of age, 
spacing and choice of species composition on forest 
growth and better wood quality control are the keys to 
effective forest management (Spiecker 2002). Apart 
from this, information on species interaction with 
environmental changes on  particular site is crucial 
for risk assessment (spiecker 2002).

Dendrochronology

Dendrochronology is the branch of science which 
deals with annual rings of trees and infers the infor-
mation about their age, growth rate, past events of 
forest fires and insect pests outbreaks, wood quality 
(density) and tree species interaction with the past 
environment with high temporal resolution. Tree 
rings record the environmental conditions through 
changes in their growth pattern and later used as an 
archive for the past environment (Spiecker 2002). 
Tree ring width measurements provide retrospective 
growth information across large environmental gra-
dients and at different time scale from sub-annual to 
the multi-centennial. This information is crucial to 
realize global climate change impacts on forest veg-
etation (Babst et al. 2018). Tree rings has been used 
to study  impact of climate change on forest growth, 
growth recovery from climate extremes, relationship 
between growth and canopy dynamics, signs of CO2 
fertilization (Babst et al. 2018). The other applica-
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tions of dendrochronology include quantification 
of above aboveground biomass (Babst et al. 2014b) 
understanding physiology of wood development 
(Rathgeber et al. 2016) and standardization of climate 
reconstruction models (Guiot et al. 2014).

Climate change has become a definite feature of 
Anthropocene (Marotzke et al. 2017) and forecasting 
and  quantifying the impact on natural ecosystems 
have become inevitable. Forests are the major sinks 
for anthropogenic CO2 (Le Quéré et al. 2016) and 
store it in their woody biomass for a very long period 
of time (Körner 2017). The impact of biotic and abiot-
ic changes on forest ecosystem can be understood  at 
spatial and temporal scales through knowledge about 
the possible consequences of increased warming 
(Babst et al. 2018).

Applications of dendrochronology in climate
resilient forest management

Tree rings and forest inventory data

Climate has strong influence on tree growth and 
tree rings give great insight into climate- growth 
relationship. Tree ring data is insufficiently available 
to understand the forest development at large spatial 
scales under climate change (Rohner et al. 2016). 
Combining tree ring measurements with forest in-
ventory data can help in improving the models for 
forest  dynamics (Evans et al. 2017). The robust forest 
dynamics models can improve our understanding on 
forest growth responses to anthropogenic climate 
change and develop better management plans to save 
the ecosystems and ecosystem services. Inventory 
data such as diameter at breast height (DBH) can be 
combined with tree ring data to reconstruct annual 
tree diameter (Bakker 2005) and further be trans-
formed into absolute estimates of tree growth using 
allometric equations (babst et al. 2018, Forrester 
et al. 2017). The  absolute estimates of tree growth 
can be linked with carbon sequestration and forest 
productivity (Babst et al. 2018. Klesse et al. 2018). 
demographic competition has critical influence on 
growth of individuals  and important for carbon ac-
counting work (Chen et al. 2016, babst et al. 2018). 
Inventory data on forest stand basal area can be used 

to understand the forest vegetation competition in a 
given stand. Further, the two data sets can also be in-
tegrated through Bayesian hierarchical model to infer 
information about impact of multiple  factors such as 
climate, biophysical conditions, tree size, stand level 
competition, canopy status and forest management 
practices on tree growth (Evan et al. 2017).

Integrating tree rings with genetic 
and physiological traits

IPCC (2013) has projected an increasing frequency 
of temperature dependent extreme events (drought 
or heat waves) which could result in niche shifts for 
many forest species (McKenney et al. 2014). This has 
raised the question about trees ability to stand with 
these rapid changes. Adaptation and niche shift of 
species is expected to be slow (housset et al. 2018) 
and will be dependent on species sensitivity to cli-
matic changes and its adaptation capacity (Aubin et 
al. 2016). The behavior of a species can be predicted 
under projected environmental changes using the 
information on genetic and physiological responses 
of species to climate (Aubin et al. 2016, Urban et al. 
2016, Aitken and Whitlock 2013). Time series data 
based on tree rings is must to assess tree sensitivity to 
climate fluctuation and explaining its genetic makeup 
of adaptation (Alberto et al. 2013).

Genotype-environment association (GEA) and 
genotype-phenotype association (GAP) are the two 
genomic approaches applied to identify genes for 
local climate adaptation (Sork et al. 2013). GEA 
method establishes a correlation between genetic 
markers and environmental parameters of origin place 
of populations (Coop et al. 2010) whereas GPA shows 
a link between genotypes of shared environment and 
characters of interest and has an advantage over GEA  
(Eckert et al. 2015). Common garden experiments 
combined with genetic material from provenances and 
dendrometric characters viz. diameter or  height are 
recommended to document local adaptation (Alberto 
et al. 2013) under rapid climate change scenario (Sork 
et al. 2013). Further, these experiments combined with 
genomic methods offer the advantage of decoding 
genomic makeup of local adaptation and identifying 
alleged genes or genomic regions of climate resilience 
(de Villemereuil et al. 2016).
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Functional characters related to climate adap-
tation are little known and their evaluation is rather  
difficult (Aitken and Bemmels 2016), especially the 
valuation of dendrometric characters which are the 
collective result of diverse climatic events. Measure-
ment of these traits would require advanced tools and 
approaches to expand the knowledge about species 
sensitivity and adaptability (Urban et al. 2016)

Dendroecologist have developed several meth-
ods of linking wood anatomical traits changes with 
climate and allows quantification of climatic limits 
employed on trees (Girardin et al. 2016, Hartmann 
and Trumbore 2016, Housset et al. 2018). Cambial 
activity is the function of the physiological mech-
anism of trees related to water stress, resistance 
for freezing injuries and phenological dormancy. 
Measuring these characteristics of wood can help 
in developing reflective time-series data for growth 
characters. Quantification of yearly growth responses 
for prompt  climatic extremes evaluates the influence 
of abiotic stresses (Montwé et al.2016).

Secondary xylem acts as archive for external 
signals which modifies its functional traits at periods 
of time (Baas and Wheeler 2011). In living trees, 
wood performs crucial functions of plant hydraulics, 
mechanical support, metabolism and defence against 
microorganisms and insects (Baas and Wheeler 2011).

Hydraulic conductivity of tree is determined by 
diameter and density of wood vessels, type of per-
foration plate (simple or scalariform) and porosity 
of pit membrane (Sperry 2003). These traits have 
control over cavitation of water columns, extension 
of embolism under high negative pressure and spread 
of air bubbles due to freeze-thaw cycles (Choat et 
al. 2008). Wood anatomical features interact with 
root-rhizosphere interface and stomatal water-air 
interface in hydraulic continuum (Barnard et al. 
2011). The trajectories of wood structural feature 
and other hydraulic, biophysical and physiological 
traits are interrelated and results in different trade-
off series and part of species tactics to-gain other 
resources along with water (Reich 2014, Anderegg 
and Meinzer 2015b), Xylem safety versus efficiency 
is the best example of hydraulic trade-off wherein 
highly conductive xylem is more prone to drought 

induced embolism (Anderegg and Meinzer 2015b). 
Wood density serves as strong proxy of an array of 
hydraulic traits and found to be related with trunk to 
branch vessel tapering and leaf-specific conductivity 
of branch as well as whole plant (Chave et al. 2009, 
Anderegg and Meinzer 2015b).

Higher CO2 concentrations increases the intrinsic 
water efficiency (iWUE) of forests (Keenan et al. 
2013) and allows them to sequester more carbon per 
unit of water (Ponce- Campos et al. 2013). It also 
affects xylem anatomy and results in larger canals in 
ring porous angiosperms and in some gymnosperms 
(Way 2013, Anderegg and Meinzer 2015b). Large 
sized canals result in increased hydraulic conductivity 
and susceptibility to water stress and often counter-
balanced by CO2  accelerated temperature and drought 
(Kilpeläinen et al. 2007, Anderegg and Meinzer 
2015b). The close coupling among xylem anatomy, 
its functions and environment projects hydraulic traits  
act as an indicator of drought vulnerability of location, 
species and biomes (Nardini et al. 2013). Studies have 
shown the mortality risk in species due to hydraulic 
system failure and have reported that a loss of 50% 
in hydraulic conductivity in gymnosperms and 80% 
in angiosperms can result in plant death (Brodribb 
and Cochard 2009, Urli et al. 2013).

Dendrochronology and dendroanatomy offer 
opportunity to study above characters on different 
time scales and help in understanding the genetic and 
physiological traits of tree species related to climatic 
adaptation.

Linking forest disturbances and tree rings

Climate change has also affected the occurrence and 
frequencies of forest disturbance events such as forest, 
insect outbreak, floods, wind, avalanches, pathogen 
outbreak and drought (Speer 2010). Dendrochronolo-
gy can also be linked with the disturbances in a forest 
stand. The history of forest disturbance events such 
as insect outbreak, disease outbreak, forest fires can 
bes studied using dendrochronology (Speer 2010).

The history of fires events is studied under den-
dropyrochronology. It helps dendrochronologists in 
determining the natural range of variability which 
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describes the past incidences of fire, their frequency 
and extant (Speer 2010). Forest fire, a vital ecosystem 
process critically affects the trees in fire prone areas, 
affects mortality  rate and stresses out the surviving 
individuals (Varner et al. 2009, Seifert et al. 2017). 
Its impact can be seen in the affected part of tree and 
also reflects in the ring-width due to systemic reaction 
of tree (Grissino-Mayer 2010, Fulé 2010). This has 
become important under current weather conditions 
of increasing temperatures and irregular rainfall due 
to climate change (Aldersley et al. 2011).

Tree rings are also used for reconstruction of 
insect outbreak events using both either direct host 
growth chronology or growth chronology of non-host 
to detect decreases in the growth of host species, the 
latter is preferred (Humbert and Kneeshaw 2011). 
These events are studied under dendroentomology 
and it documents information on outbreak occurrence,  
changes in insect population and outbreak duration, 
outbreaks frequency and their spread (Swetnam et 
al. 1985, Speer 2010). Dendroentomological tools 
are also used to study forest pathogen outbreaks 
and complex disturbance system of multiple agents 
(Thompson 2005, Welsh 2007, Speer 2010).

Another disturbance in forest ecosystems is 
occurrence of floods. As per the Intergovernmen-
tal Panel on Climate Change (IPCC), the intensity 
and frequency of floods is likely to increase due to 
increase in intensity and frequency of heavy pre-
cipitations IPCC 2012, Ballesteros-Cánovas et al. 
2015).  The tree ring studies of floods are based on 
process-event-response (Shroder 1978) and past evi-
dences of flood can be traced through abrasion scars, 
stem abnormalities, bending of stems, dead trees and 
abnormalities in wood anatomy caused by prolonged 
submergence (Ballesteros-Cánovas et al. 2015).

Snow avalanches are common feature in moun-
tainous regions and generally occur in high and steep 
mountain slopes (Köse et al. 2010). Tree rings record 
avalanche events and avalanches can be dated using 
dendrochronological methods (Schweingruber 1996, 
Köse et al. 2010). The avalanche frequencies, regions 
of occurrence and their boundaries can be determined 
using data related to tree rings and vegetation struc-
ture (Casteller et al. 2007, 2008, Köse et al. 2010).

Generally, wind damages the forest vegetation in 
a scale of low to intermediate severity but sometimes 
it severely affects forest ecosystem and coverts the 
landscape of thousands of hectares (Freiich 2002, 
Woodall and Nagel 2007, Zielonka et al. 2010). The 
information on past disturbances helps in identifying  
potential threats using current structural and compo-
sitional pattern and projecting future development 
(Zielonka et al. 2010). Dendrochronological tech-
niques based on detection of tree ring reaction (e.g. 
growth release co-occcurred in time with enhanced 
production of reaction wood) to disturbance which 
occurs due to post-disturbance improbement of re-
source conditions. (Bergeron et al. 2002, Zielonka 
et al. 2010).

Combining tree rings with space-based indices

Application of high temporal frequency and long-time 
series remote sensing data taken from on different 
spectral channels has become common to monitor 
changes in vegetation. Several space-based vegeta-
tion  indices (e.g. Normalized Difference Vegetation 
Index -NDVI, Enhanced Vegetation Index- EVI) 
have been developed to monitor and measure the 
status of vegetation. Among these, NDVI is most 
frequently used. The changes in the physiology and 
structure of the plant canopy can directly be viewed 
using NDVI  (Wang et al. 2004b). The values of 
NDVI strongly correlate with leaf area index (LAI) 
and forest biomass, whereas, tree ring widths and 
maximum latewood density are closely related to 
forest productivity (Wang et al. 2004a, D’ Arrigo 
et al. 2000). Tree rings provide high resolution data 
of age estimates and long-term growth which are 
crucial to understand tree population dynamics and 
development of sustainable management systems 
(Brienen and Zuidema 2005). Correlating tree rings 
width data with NDVI (canopy phenology) can help 
in refining forest productivity estimates (babst et al. 
2014a). Annually resolved long-term carbon budgets 
can be developed by distinguishing time of cambial 
activity and leaf phenology through tree rings and 
space-based indices (Babst et al. 2014a).

Conclusion

Dendrochronology has great scope in understanding 
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the impact of climate change on forest ecosystem  
structure and functioning. It has wide range of appli-
cations in forestry researches and can be applied to 
study the impact of climate change on growth related 
trends of forest trees, species specific traits for local 
adaptation, physiological response of forest tree 
towards water stress condition and impact of forest 
disturbances (viz. forest fire, inset outbreak, floods, 
wind, avalanches, pathogen outbreak) on forest 
health. Tree ring data with high temporal and spatial 
resolution gives great insight into these events and 
helps in understanding the forest and individual tree 
response towards these events. Dendrochronological 
data from natural as well as permanent forest plots can 
play an important role in such studies. The findings 
from these studies could provide the basis for better 
forest management strategies under changing climate 
scenario and can help in managing the existing forests 
in sustainable manner.
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