
221

 

Environment and Ecology 37 (1A) : 221—228, January—March 2019
Website: environmentandecology.com    ISSN 0970-0420

Modelling the Gross Primary Productivity (GPP)
of an Indian Mangrove Vegetation

Kripa M. K., Ankit Gohel, Nikhil Lele, 
Archana U. Mankad, T. V. R.Murthy

Received 17 August 2018; Accepted 22 September 2018; Published on 13 October 2018

Abstract    Spatio-temporal variability of Gross Pri-
mary Productivity (GPP) remains a challenge despite 
its importance in the global carbon budget. In this 
paper, we have attempted to model the Gross Primary 
Productivity of Indian mangroves with the aid of in 
situ measurements of biophysical and biochemical 
parameters using SCOPE model and the results are 
compared with the GPP outputs derived Vegetation 
Photosynthesis Model (VPM). Soil Canopy Obser-
vation, Photochemistry and Energy fluxes (SCOPE) 
model is used for simulation of GPP, using in-situ 
biochemical measurements of chlorophyll content 
(Cab) and maximum carboxylation rate (Vcmax). The 
simulated values of GPP from the model ranged be-
tween 0.0 to 2.6 µmol m-2s-1 for summer season, 0.0 to 
10 µmol m-2s-1 for post-monsoon and 0.0 to 6.6 µmol 

m-2 s-1 during winter season. Estimated GPP using 
in-situ measurements and satellite- based Vegetation 
Photosynthesis Model (VPM) during summer ranges 
from 0.0 to 6.7 µmol m-2 s-1,0.0 to 9.4 µmol m-2 s-1 
in post-monsoon and during winter 0.0 to 6.8 µmol 
m-2 s-1 from Pichavaram mangrove forest, Tamilnadu. 
Correlation coefficient between SCOPE GPP and 
VPM GPP for summer, post-monsoon and winter 
were 0.88, 0.84 and 0.79 respectively.

Keywords  GPP, Mangrove, SCOPE, Vegetation 
photosynthesis model, Pichavaram.    

Introduction

The study on the Gross Primary Productivity (GPP) of 
terrestrial ecosystems around the globe has emerged 
as an important necessity as it gives insight to the pro-
cess of carbon sequestration, carbon cycle and even 
research on climate change. GPP can be described as 
the net rate of carbon fixation by vegetation, through 
the process of photosynthesis. With the changing cli-
matic scenario and the increasing CO2 concentration 
in the atmosphere, the carbon sequestration potential 
during the upcoming years will be seriously affected, 
which in turn affects the quantification of the amount 
of carbon uptake and its inter-annual variability (Ra-
makrishna et al. 2003). Terrestrial vegetation plays an 
important role in the fixation of global carbon dioxide 
(CO2) into organic compounds through the process 
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of photosynthesis. Understanding and quantifying 
spatiotemporal variation in GPP is thus important 
for monitoring food security, global carbon cycle 
and the climate system (Schimel et al. 2015). GPP 
drives the inter-annual variability of the CO2 mixing 
ratio and may substantially affect the future climate 
trajectory (Le Quéré et al. 2015). Estimation of GPP 
from eddy covariance measurements at flux tower site 
(Dennis et al. 2001, 2003) are carried out to globally 
distribute mechanistic land surface model simulations 
(Friedlingstein et al. 2006, Sitch et al. 2008).

Numerous predictive models exists for the 
quantification of GPP, among which, the widely used 
ones are the Light Use Efficiency Model, which was 
proposed by Monteith (1972, 1977). As the model 
proposes a direct relationship between the Absorbed 
photosynthetically Active Radiation (APAR) and the  
productivity in plants, it can addresss the temporal 
and spatial variability in GPP. GPP is proportional 
to incoming photosynthesis Active Radiation (PAR), 
the fraction of absorbed PAR by vegetation (fAPAR) 
and light use efficiency (LUE), which was proposed 
by Monteith (1972, 1977). Another main approach to 
estimate GPP at different temporal and spatial scales 
is to use process-based terrestrial biosphere models 
(TBMs) (Sellers et al. 1997). TBMs generally repre-
sent physiological, biophysical and biogeochemical 
processes in a mechanistic way of photosynthesis, 
respiration and canopy energy balance and they re-
quire more inputs, most importantly meteorological, 
soil and land cover information. Most of these models 
rely on C3 and C4 photosynthesis models (Farquhar et 
al. 1980, Collatz et al. 1992) to estimate GPP. SCOPE 
model belongs to this group and can be used to sim-
ulate carbon, water vapor, and heat fluxes.

Even though eddy covariance method is widely 
used to measure the CO2 exchange, the number of 
eddy covariance towers are limited. Thus, the GPP 
data derived from these towers can be used for the 
validation of GPP derived or estimated using various 
models. Hence, model simulations have become an 
important method to estimate GPP at both global  
and regional scale. Depending upon their ability to 
estimate the fraction of adsorbed PAR (FPAR) these 
models can be divided into two. One group uses the 
fraction of PAR absorbed at the canopy level. For 

example, PSN (Photosynthesis model) (Zhao et al. 
2005), CASA (Carnegie-Ames-Stanford Approach) 
model (Potter 1993, 1999) and GloPEM (Global 
Production Efficiency Model) (Stephen and Samuel 
1995). These models mostly make use the vegetation 
index NDVI to estimate the fraction of absorbed PAR 
by the canopy.

The second group uses the fraction of absorbed 
PAR at the green leaf level, or at chlorophyll level. 
Vegetation photosynthesis Model (VPM) (Xiao et al. 
2004, Zhang et al. 2014) is an example for this cate-
gory. The advantage of using VPM model is that the  
model uses an additional phenology scalar (Pscalar), 
which is primarily dependent on the life expectancy 
of leaves, whether it be evergreen or deciduous. The 
model also emphasises on monitoring the Light Use 
Efficiency (LUE) which improves the estimation ac-
curacy of LUE. This is very much important because 
LUE is highly variable from species to species and 
from time to time. In addition, the incorporation of 
physiological parameters of vegetation will greatly 
aid the functioning of the model as it generates ac-
curate results on the Gross Primary productivity. It 
is challenging to determine the Light use efficiency 
across various vegetation types throughout the 
varying seasons. In this context, VPM model plays 
a significant role. When the climatic conditions are 
unfavorable, the model takes into account various 
climatic parameters, which are measured in -situ 
like water and temperature. In addition, the model 
demarcates photosynthetically active vegetation from 
the non-photosynthetically active ones. 

The quantification of seasonal variation in GPP 
remains a difficult task (Grace et al. 1995, 1996, 
Loescher et al. 2003, Saleska et al. 2003). The ma-
jor objectives of the study are (1) Modelling GPP 
through SCOPE using biochemical in-situ parame-
ters, (2) Estimation of GPP using VPM method, (3) 
comparison between SCOPE GPPP and VPM GPP 
at seasonal scale.

Materials and Methods

Study area and field data collection

Pichavaram mangrove forest (Latitude : 11.46o N, 
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Fig. 1. Dominant Vegetation map of Pichavaram Mangrove using Resources at -2 LISS III and RISAT-1 (MRS) data.

Longitude : 79.79oE) which was declared as a reserve 
forest in 1987, covers an area about 1471 ha including 
mangrove forests, mudflats, back waters and sand 
dunes. The climate is sub-humid with very warm 
summer and with an annual average rainfall (70 years) 
of 1310 mm and annual average rainy days up to 56. 
Existing information on the species composition was 
gathered from available sources on the study area. 
This was followed by detailed field investigations to 
record the vegetation composition to derive phytoso-
ciological parameters. Analysis of phytosociological 
parameters from a total of 18 quadrats revealed five 
dominant categories of mangroves in the study area, 
viz. Avicennia marina dominant, Excoecaria agallo-
cha dominant, Rhizophora mucronata dominant, mix 
of species of Avicennia (A. marina and A. officinalis) 

besides another class of mixed mangroves without the 
conspicuous dominance of a single species. In-situ 
measurements of photosynthetic rate and fluorescence 
measurements were crried out with the instrument 
LI-COR LI-6400XT-Portable Photosynthesis System 
(LI-COR 2004). Integrated Pulse Amplitude Modu-
lation system (PAM) and integrated Leaf Chamber 
Fluorometer (LCF), has the capability to simulta-
neously measure the chlorophyll fluorescence and 
photosynthesis at leaf level with the aid of its Light 
Emitting Diode (LED) based fluorescence source 
accessory. Non-destructive diurnal measurements of 
the major mangrove species at leaf level was recorded 
from morning 5 : 30 to evening 5 : 30 repeatedly at 
an interval of every 45 minites. Two leaf samples 
(Sun and Shade leaves) of each species were studied 



224

Fig. 2.  Correlation between SCOPE GPP and VPM GPP for different seasons (a) Summer, (b) Post-Monsoon, and (c) Winter.

to account the variability within the species. Both 
photosynthesis and fluorescence measurements were 
carried out for the same leaf throughout the day. LAI 
measurements were carried out with  the aid of Dig-
ital Plant Canopy Imager CID Bio-science CI 110. 
In situ measurements of chlorophyll-a and b were 
carried  out on the basis of Arnon’s estimation method 
(Arnon 1949). Both the optical and SAR data were 
used along with limited field observations to derive 
a spatial map of Dominant species of the study area 
based on decision rules (Figs. 1, 2).

Estimation of GPP using VPM model

VPM model proposed by Xiao (2004), was considered 
for the study with slight modifications. Mangroves 
being ubiquitous in the saline region, salinity was 
included as a limiting factor. Also, with the conjunc-

Table 1.  SCOPE parameters. 

           	 Parameters	 Values	 Units

	 Incoming short wave radiation	 Depending on months	 W m-2

	 Maximum carboxylation rate	 Field data	 µmol m-2 s-1

	 Chlorophyll a + b content	 Field data	 µg cm-2

	 Leaf area index LAI	 0.5 – 4.0	 /
	 Dry matter content	 0.012	 g cm
	 Leaf equivalent water thickness	 0.009	 cm
	 Senescent material	 0.0	 /
	 Leaf structure	 1.4	 /
	 Leaf angle distribution parameter a	 -0.35	 /
	 Leaf angle distribution parameter b	 -0.15	 /
	 Leaf width	 0.1	 m 
	 Ball-Berry stomatal conductance	 0.8	 /
	 Dark respiration rate 25o as fraction of V cmax	 0.015	 /
	 Cowan’s water use efficiency	 700	 /
	 Leaf thermal reflectance	 0.01	 /
	 Leaf thermal transmittance 	 0.01	 /

tive use of in-situ measurements and satellite data, a 
spatial map of GPP was generated. From the diurnal 
photosynthetic rate measurements of summer (May 
2015), post-monsoon (November 2015) and winter 
(February 2016) season, the corresponding Maximum 
Light Use Efficiency (ε0) of the mangroves under 
study was derived as a ratio of the net photosynthe-
sis and PAR (photosynthetically active radiation). 
KALPANA insolation images were downloaded and 
used for the derivation of PAR. 

Resources at 2A, LISS-III and LISS-IV data 
near synchronous to our field data was archived. 
After pre-processing the images, various indices like 
simple ratio, Land Surface Water Index (LSWI), Nor-
malized Difference Vegetation Index (NDVI) were 
computed. From NDVI, the Fractional Vegetation 
Cover image was derived. Using simple ratio, fraction 
of  PAR absorbed by the chlorophyll (fPARcl) were 
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estimated. Water scalar was derived from the LSWI 
image. The phenology scalar (Ps) was considered as 
1, considering that the leaf is in the fully expanded 
condition (Xiao et al. 2004). MODIS Land Surface 
Temperature (LST) data at 1 km resolution was down 
loaded and the area of interest was separated. Frac-
tional Vegetation Cover after being resampled to 1 
km, was correlated with the MODIS data to derive a 

model equation to generate temperature image, from 
which the temperature scalar images were developed. 
From the in-situ measured soil salinity, the respective 
salinity images were generated by the interpolation 
method through kriging. The respective salinity scalar  
(Ss) image was developed from this image. Finally, 
Maximum light use efficiency (equation 1) and GPP 
(equation 2) was computed.

Fig. 3.   (a) SCOPE GPP & VPM GPP, Summer, May 2015.  (b) SCOPE GPP & VPM GPP, Post-Monsoon, December 2015.
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Light Use Efficiency (ε)  = ε0 × Ps × Ws × Ts × Ss                     (1)

Where,  ε0 = Maximum light use efficiency, Ps = 
Phenology scalar, Ws =Water scalar, Ts =Temperature 
scalar, Ss = Salinity scalar.

Gross Primary Productivity (GPP) = ε × f PARchl × PAR        (2)

SCOPE model and input parameter

SCOPE is a vertical (1-D) integrated radiative transfer 
and  energy balance model. The model calculates 
radiation transport in a multilayer canopy as a func-
tion of the solar zenith angle and leaf orientation to 
simulate fluorescence in the direction of observa-
tion. The biochemical component has been updated 
based on (Collatz et al. 1991), (Collatz et al. 1992) 
for C3 and C4 plants, respectively. It determines the 
illumination and net radiation of leaves with respect 
to their position (distance from the top of canopy in 
units of leaf area) and orientation (leaf inclination 
and azimuth angle) and the spectra of reflected and 
emitted radiation as observed above the canopy in 
the specified satellite observation geometry. SCOPE 
requires inputs of meteorological forcing (incoming 
short wave and long wave radiation, air temperature, 
humidity, wind speed and CO2 concentration) and 
four categories of factors : (1) vegetation structure 
parameters, such as canopy height, leaf size, leaf 

Fig. 4.  Comparison between SCOPE GPP and VPM GPP  Winter seasons at 24 m of Pichavaram.

angle distribution, and LAI ; (2) leaf biophysical 
parameters : leaf chlorophyll content (Cab), dry matter 
content (Cdm) leaf equivalent water thickness (Cw) 
senescent   material (Cs) and leaf structure (N); (3) 
optical parameters : Reflectance of soil in the visible, 
near infrared and thermal bands, and vegetation (ther-
mal) emissivity; (4) plant physiological parameters : 
stomatal conductance parameter (m) and maximum 
carboxylation capacity,Vcmax (Zhang et al. 2014). The 
required SCOPE parameters are described in Table 
1. Output of the model is the spectrum of outgoing 
radiation in the viewing direction, turbulent heat 
fluxes, photosynthesis and chlorophyll fluorescence. 
Physical parameters were incoming short wave radi-
ation (www.clearskycalculator.com), air temperature, 
air pressure, atmospheric vapor pressure, solar zenith 
angle and in-situ measurements of biochemical pa-
rameters like Vcmax and Cab. After setting LAI, Vcmax 
and Cab, SCOPE simulations was run for 1 : 30 pm 
(IST) to observe the variability of GPP in high light 
condition for summer, post-monsoon and winter 
seasons over Pichavaram mangrove. We are using 
LAI map and Dominant mangrove species map for 
mapping of GPP. 

Results and Discussion

In the current study, comparison of seasonal dy-



227

 

namics of SCOPE GPP and VPM GPP in summer, 
post-monsoon and winter seasons at 24 m (Figs. 3, 
4) was carried out.  For summer, SCOPE and VPM 
GPP ranges from 0.0 to 2.6 µmol m-2 s-1 and 0.0 to  6.7 
µmol m-2 s-1 . In post-monsoon, we estimated SCOPE 
and VPM GPP varies from 0.0 to 10 µmol m-2 s-1 and 
0.0 to 9.4 µmol m-2 s-1 respectively. For winter, we 
observed SCOPE GPP and VPM GPP ranges from 
0.0 to 6.6 µmol m-2 s-1 and 0.0 to 6.8 µmol m-2 s-1 . 
Fig. 1 shows comparison between SCOPE and VPM 
GPP against different seasons and different mangrove 
species. The largest difference of 2.06 µmol m-2 s-1 is 
observed in winter season. The lowest difference 4.24 
µmol m-2s-1 is found in summer season. In summer, 
Standard deviation of 0.30 µmol m-2 s-1, bias of 4.24 
µmol m-2 s-1 and correlation of 0.88 was recorded . 
For post- monsoon, Std deviation of 1.09 µmol m-2 
s-1 , bias of -1.73 µmol m-2 s-1 and correlation of 0.84 
was estimated. In winter , Std deviation of 1.03 µmol 
m-2 s-1, bias of -2.06 µmol m-2 s-1 and correlation of 
0.79 was recorded.

Conclusion

We compared SCOPE GPP and VPM GPP for 
summer, post-monsoon and winter seasons at 24 m 
resolution. The coefficient of correlation was found 
to be 0.88 during summer, which was the highest. A 
good correlation was found between the two models 
during post-monsoon also (R2 =0.84). Winter season 
witnessed the least correlation coefficient (R2 =0.79). 
Thus, to conclude, results from both the models were 
in good agreement to each other.  Either of both the 
models could be efficiently used to determine the 
Gross Primary Productivity depending on the nature 
of in-situ data available. The results indicate that both 
the models can be effectively used for the estimation 
of GPP. Thus, the model can be effectively applied to 
other ecosystems also, provided a thorough research 
is carried out on the climatic variables, which effects 
the temporal variation in GPP of that particular re-
gion. The results not only validates the models, but 
also identifies areas conductive for production and 
further plantation could be done on its basis. Thus, 
studies related to carbon estimates need to be given 
more importance in the present scenario of changing 
climatic conditions. Even though, these models have 
widely used the physiological, biochemical, optical 
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