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Abstract     In recent years the rainfall in Iran have 
been reduce. Although the Iranian Government try 
to reduce undesirable effects of rainfall reduction by 
some water construction. His study presents water 
body change detecting in Karun basin and we try 
to evaluate change of water content in the most im-
portant basin in Iran (Karun basin) by using remote 
sensing method. The Normalized Difference Water 
Index (NDWI) image differencing and post-classifi-
cation techniques were applied to calculate the change 
of water content since of 1992 by Landsat-5 (TM) 
images to 2017 by Landsat-8 (OLI) images the NDWI 
was derived first then classified to produce vegetation 
and water body maps followed by quantifying the 
changes. The results indicated an intense decrease  in 
the sparse vegetation and slight water bodies by 4302 
km2 (6.4%), 593 km2 (0.9%) respectively. In  contrast, 
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the highest increase occurring in no vegetation class 
(other land cover) of 3664 km2 (5.4%).

Keywords     Water body changes, NDWI image 
differencing, Landsat-5 (TM), Landsat-8 (OLI), 
Post-classification.

Introduction

Remote sensing imaging is considered one of the main 
sources of information about the Earths cover. They 
have been widely used in detecting and monitoring 
land cover changes at various scales because of the 
capability of remote sensing technology to provide 
a broad range of calibrated, objective, repeatable 
and cost-effective data for large and regional areas 
(Campbell 2002, Richards and Jia 2006 and Richards 
2012). Furthermore, they have been found suitable 
for a wide range of applications. Among remote 
sensing applications is detecting water and moisture 
content changes.

As an important part of the Earths water cycle, 
land surface water bodies, such as rivers, lakes and 
reservoirs, are irreplaceable for the global ecosystem 
and climate system. Surveying land surface water 
bodies and delineating their spatial distribution has 
a great significance to understanding hydrology 
processes and managing water resources (Papa et 
al. 2008, Vorosmarty et al.1997). At present, remote 
sensing has become a routine approach for land sur-
face water bodies monitoring, because the acquired 
data can provide macroscopic, real-time, dynamic 
and cost-effective information, which is substantially 
different from conventional in situ measurements 
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analysis of independent spectral classifications of 
images acquired on two different dates. It is char-
acterized by easy calculation and provides from-to 
change information. It also has equal capability of 
mapping the kind of landscape transformation that 
has occurred between the 2 dates under consideration. 
It is worth mentioning , however, that the overall 
accuracy of the product depends on the accuracy of 
the individual classification (Al-doski et al. 2013). 
During drought event, vegetation canopy can be af-
fected by water  stress. This can have major impact 
on the plant development in general and can cause 
crop failure or lower crop production in agricultural 
areas. Early recognition of plant water stress can be 
critical to prevent such consequences. By providing 
near-real time information on the plant water stress 
to the stakeholders, water and agricultural manage-
ment can be much improved, notably by irrigating 
specifically areas where plant water needs are not 
fulfilled anymore.

The Normalized Difference Water Index (NDWI)  
is known to be strongly related to the plant water 
content. It is therefore a very good proxy for plant 
water stress. The Normalized Difference Water Index 
(NDWI)  (Gao 1996) is a satellite-derived index from 
the Near Infrared (NIR) and Short Wave Infrared 
(SWIR) channels. The SWIR reflectance reflects 
changes in both the vegetation water content and the 
spongy mesophyll structure in vegetation canopies, 
while the NIR  reflectance is affected by leaf internal 
structure and leaf  dry matter content but not by  water 
content. The combination of the NIR with the SWIR 
removes variations induced by leaf internal structure 
and leaf dry matter content, improving the accuracy 
in retrieving the vegetation water content (Ceccato 
et al. 2001). The amount of water available in the 
internal leaf structure largely controls the spectral re-
flectance in the SWIR  interval of the electromagnetic 
spectrum. SWIR reflectance is therefore negatively 
related to leaf water content (Tucker 1980). Its use-
fulness for drought monitoring and early warming has 
been demonstrated in different studies (Ceccato et al. 
2002, Gu et al. 2007). It is computed using the Near 
Infrared (NIR) and the Short Wave Infrared (SWIR) 
reflectance, which makes it sensitive to changes in 
liquid  water content and in spongy mesophyll of  

(Chen et al. 2004, Feng et al. 2012). Various methods,  
including single band density slicing (Work and Gilm-
er 1976), unsupervised and supervised classification 
(Huang et al. 2014, Du et al. 2014) and spectral water 
indexes (Li et al. 2016), were developed in order to 
extract water bodies from different remote sensing 
images. 

Among all existing water body mapping meth-
ods, the spectral water index-based method is a 
type of reliable method, because it is user friendly, 
efficient and has low computational cost (Ryu et al. 
2002, Sivanpillai and Miller 2010). Different water 
indexes have already been proposed in the past few 
decades. Specifically, McFeeters (1996) proposed 
the Normalized Difference Water Index (NDWI)  
(McFeeters 1996), using the green and Near Infra-
red (NIR) bands  of remote sensing images based 
on the phenomenon that the water body has strong 
absorbability and low radiation in the range from 
visible to infrared wavelengths. NDWI can enhance 
the water information effectively in most cases, but 
it is sensitive to built-up land and often results in 
over-estimated water bodies. Many previous research 
works have demonstrated that MNDWI is more 
suitable to enhance water information and can ex-
tract water bodies with greater accuracy than NDWI 
(Du et al. 2014, Li et al. 2013, Xu 2006, Singh et al. 
2015). For regional studies, images provided by the 
Thematic Mapper (TM) and the latest Operational 
Land Imager (OLI) from Landsat series satellites 
are popular datasets. For example, Hui  et al. (2008) 
modelled the spatial and temporal change of Poyang 
Lake using multi-temporal Landsat TM and ETM + 
images (Hui et al. 2008). Du et al. (2014) extracted the 
water body maps at subareas over the Yangtze River 
Basin and Huaihe River Basin in China from Land-
sat OLI images (Du et al. 2014). Rokni et al. (2014) 
extracted water features and detected change using 
Landsat TM, ETM + and OLI images (Rokni et al. 
2014). Compared to MODIS, the Landsat TM, ETM 
+ and OLI images have much finer spatial resolutions 
(30 m) and can extract open water bodies with more 
explicit and accurate boundaries.

The post-classification method is widely used to 
quantify changes. This method involves comparative 
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                                                                     Fig. 1. Iran and the case study area (Karun basin).

Table 1. Comparison between Landsat-8/OLI and Landsat-5/TM (L8).

                                         Landsat-8/OLI                   Landsat-5/TM
   Reso-   Wave- Reso-
  Wavelength lution   length lution
                        Band (μm) (m) Band  (μm) (m)

1 Ultra Blue 0.435–0.451 30 1 Blue 0.45–0.52 30
2 Blue 0.452–0.512 30 2 Green 0.52–0.60 30
3 Green 0.533–0.590 30 3 Red 0.63–0.69 30
4 Red 0.636–0.673 30 4 (NIR) 0.76–0.90 30
5 (NIR) 0.851–0.879 30 5 (SWIR) 1 1.55–1.75 30
6 (SWIR) 1 1.566–1.651 30 6 Thermal 10.40–12.50 120
7 (SWIR) 2 2.107–2.294 30 7 (SWIR) 2 2.08–2.35 30
8 Panchromatic 0.503–0.676 15 –  – –
9 Cirrus 1.363–1.384 30 –  – –
10 (TIRS) 1 10.60–11.19 100 –  – –
11 (TIRS) 2 11.50–12.51 100 –  – –

vegetation canopies (Ceccato et al. 2002).
Study area and data description

Description of study area

The great basin of Karun in the Zagros highlands 
is the most important basin in the southwest part of 
Iran. The great Karun basin consists of the Dez and 
Karun rivers in the Zagros highlands. The largest 
river by discharge in Iran, the Karun river is around 
950 kilometers (590 mi) long and has an average 
discharge of 575 cubic meters per second (20,300 cu 
ft/s). Water from the Karun provides irrigation to over 
280,000 hectares (690,000 acres) of the surrounding 
plain and a further 100,000 hectares (250,000 acres) 

are planned to receive water (Khuzestan Water and 
Power Authority 2010). This basin is limited to geo-
graphical coordinates 29o58´ to 34o06´ degrees north 
latitude and 51o57´ to 48o00´ degrees east longitude. 
The basin area is 67,257 square kilometers, 67% of 
it is in mountainous areas and plains are form its 
33% of area.

The highest point in this region is the Dena with 
the height of 4409 meters and its lowest point is lo-
cated in Shalou Bridge with the height of 700 meters. 
This range consists of 43 main sub-basins (Fig. 1).

Landsat satellite imagery

The Operational Land Imager (OLI) on-board the 
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                     Fig. 2. Flow diagram of methodology.

Landsat-8 was launched by the National Aeronautics 
and Space Administration (NASA) and the United 
States Geological Survey (USGS 2015) on 17 Feb-
ruary 2013 from the Vandenberg Air Force Base 
in California. The Landsat-8/OLI offers significant 
improvements in both the data quality and spectral 
coverage compared with the Landsat-TM/ETM+and 
has obtained a large number of clear images so far. 
Since the launch of Landsat 1 in 1972, the imagery 
from the Landsat series of satellites has become the 
longest continuous dataset of reasonable high spa-
tial-resolution imagery for Earth observing, which 
is widely used for many types of remote sensing 
applications, such as land surface parameter retrieval, 
land use and land cover change (Zhong et al. 2014,  
Thorne et al. 1997) and cross-calibration for other 
sensors (Hu et al. 2001, Thome et al. 2003). The Land-
sat-8 was launched to continue Landsat’s mission of 
monitoring Earth systems and capturing changes at 
a relatively high spatial resolution (Pahlevan et al. 
2014, Markham et al. 2015). In addition to fulfilling 
the Landsat goal in data continuity, the Landsat-8 
offers significant improvements in both data quality 
and spectral coverage (Markham et al. 2015). The 
Landsat-8 has an Operational Land Imager, which 
is abbreviated as OLI (hereafter, the OLI sensor on 
-board the Landsat-8 satellite is written as Landsat-8 
/ OLI) and a Thermal Infrared Sensor on-board. The 

Ball Aerospace and Technology Corporation designed 
the OLI sensor and it includes 9 bands covering the 
visible, near infrared and short wave infrared portions 
of the spectrum (Markham et al. 2012). The OLI has 
spatial and spectral characteristics similar to those of 
the Thematic Mapper (TM) and Enhanced Themat-
ic  Mapper Plus (ETM+), but it also includes some 
enhancements. The comparison of the band settings, 
spectral range and spatial resolution between OLI and 
TM is listed in Table 1.

It is possible to choose image Landsat-7 (ETM+) 
or Landsat-8 (OLI) for 2017. The OLI is chosen as 
the reference sensor for the following reasons replace 
ETM+: The OLI imagery is more quality than the 
ETM+. Because the airborne scan line corrector in 
Landsat-7 (ETM+) failed for some reason on 31 May 
2003, the collected images have missed some stripes 
(Tollefson 2013), this has seriously affected the ap-
plication of Landsat. Instead, at least 400 scenes are 
collected by OLI daily ; these data become available 
for downloading within 24 h of acquisition.

Subsequently, the higher radiometric perfor-
mance, the higher number of bits of radiometric 
quantization and the easy access of the Landsat-8/
OLI make it a better reference sensor than the ETM+ 
(Yang et al. 2015). Landsat-5 is still operating with 
on-board Thematic Mapper (TM) sensor that include 
30 m visible and several additional bands in the Short 
Wave Infrared (SWIR) and thermal-IR band with a 
spatial resolution of 120 m (Anonymous 2012).

Thirty cloud-free Landsat-5 (TM) images ac-
quired on 1992 and 12 cloud-free Landsat-8 (OLI) on 
2017 over a 26 year period within path 163–166,  row 
36–39 covering the northeast of Iran were obtained. 
The images are available for free at the Global Land 
Cover website (http://glcf.umiacs.umd.edu). 

Materials and Methods

The overall methodology of this study is briefly 
presented below:

Pre-processing

Before using data for detecting water body changes, 
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                                                                      Fig. 3. NDWI images and reclassified image from 1992.

a series of pre-processing operations were performed 
on 2 images including geometric and radiometric  
corrections.

Geometric correction of satellite images involves 
modeling the relationship between the image and 
ground coordinate systems. All 1992 and 2017 images 
were rectified to a common Universal Transverse 
Mercator (UTM) WSG84 Datum, 39 zone coordinate 
system and registered using image to image method 
on a November 2014 Landsat OLI image.

A second order polynomial transformation and 

using a nearest neighbor algorithm for resampling was 
performed on their respective spatial resolutions. The  
transformation had a root mean square (RMS) error of 
0.4 and 0.38 for 1992 and 2017 images respectively, 
indicating that the images were accurate to within one 
pixel (Papa et al. 2008).

Radiometric correction of remotely sensed data 
is normally carried out to reduce the influence of 
inconsistencies that may affect the ability to quanti-
tatively analyze as well as interpret images (Paolini et 
al. 2006). Due to the lack of coexisting reference data 

                                                                        Fig. 4. NDWI images and reclassified image from 2017.
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                                Fig. 5. DNDWI images and reclassified image from change land cover between 1992-2017.

about these images, the relative radiometric correction 
method was applied to overcome this difficulty.

This method involved two steps: Firstly, con-
verting digital numbers (DNs) to at-satellite spectral 
radiance by using standard calibration then converting 
radiance to reflectance values to remove temporal 
differences in sensor calibration and in environmental 
factors images. The images were taken from different 
environment condition and different satellite sensor 
(OLI/TM), thus, the atmospheric conditions were 
different. As the requirements for change detection 
analysis, it is necessary to standardize the effect of 
atmosphere.    

It assumes that the radiance in deep, clear water 
or shaded area in near infrared bands is zero or close to 
zero (Teillet and Fedosejevs 1995). All pre-processing 
operations were performed with Landsat OLI/TM 
band (SWIR) 1 band, a near infrared band that were 
extracted from original Landsat data sets. The Landsat 
Thematic Mapper (TM) and Operational Land Imager  
(OLI) sensors capture reflected solar energy, convert 
these data to radiance, then rescale this data into an 
8-bit digital number  (DN) with a range between 0 and 
255 in Landsat-5 (TM) or into a 16-bit Digital Number 
(DN) with a range between 0 and 65536 in Lansat-8 

(OLI). The Dark Object Subtraction (DOS) method 
also termed as a histogram minimum method for 
atmospheric correction, was applied. It is perhaps the 
simplest atmospheric correction approach for change 
detection applications (Mahiny and Turner 2007).

From conversion to TOA Reflectance Digital 
Number (DN) of Landsat-5 involved two steps: 
Equation 1 is the basic equation for converting the 
Digital Number (DN) to spectral radiance: The for-
mula (1) used in this process is as follows (Markham 
and Barker 1986) :

               LMAX – LMIN
Lλ  = (                                              )   *(DN–QCALMIN)+LMIN

  (QCALMAX – QCALMIN)                                            (1)

Where, Lλ  is the cell value as radiance, DN = Dig-
ital number, LMINλ = Spectral radiance scales to 
QCALMIN, LMAXλ = Spectral radiance scales to 
QCALMAX, QCALMIN =The minimum quantized 
calibrated pixel value, QCALMAX = The maximum 
quantized calibrated pixel value.

Equation 2 is the basic equation for converting 
the spectral radiance to reflectance: The reflectance 
for bandλ is computed by the following equation 
(Markhar and Barker 1986) :
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Table 2. Accuracy assessment of vegetation maps for 1986 and 
1990. Producer Accuracy (PA) and User’s Accuracy (UA).

       Land cover        Land cover
        map 1992         map 2017
Land cover
classes PA%  UA% PA%  UA%

Deep water
bodies 100  100 100  100
Shallow water
bodies 98  100 97  96
Slight water
bodies 100  85 88  93
Other land 
cover 76  100 91  90
Sparsely vege-
tated  area 97  100 98  95
Aggregate vege-
tated area 100  99 100  98
Overall accu-
racy%  92.23   93.1
Kappa coeffi-
cient%  0.85   0.84
    

           π .Lλ .d2

ρλ  = ————————                       (2)
           ESUNλ.cosθ

ρλ = Unit less plantary reflectance, L λ= Spectral 
radiance (from earlier step), d = Earth-Sun distance  
in astronomical units, ESUNλ = Mean solar exoatmo-
spheric irradiances, θs = Solar zenith angle.

Where, Lλ is at satellite spectral radiance which 
is the outgoing radiation energy of the band observed 
at the top of atmosphere by the satellite (in this lab, 
we use the results calculated from step 3), d is the 
Earth-Sun distance in astronomical units, ESUNλ is 
mean solar exoatmospheric irradiances for the bandλ 
and cosθ is the cosine of the solar incident angle. 
Supposing a horizontal land surface is flat, the cosine 
of solar incidence angle (cosθ) can be calculated from 
the Sun Elevation cos (90-Sun Elevation). Since the 
inverse of d2 (which is 1/d2) in equation 3 is equivalent 
to inverse squared relative distance Earth-Sun, dr, the 
equation 3 can be rewritten as :

                π .Lλ 
ρλ  =  ————————                       (3)
              ESUNλ.cosθ.dr

The annual averaged value of dr is 1.0 and it 
ranges from about 0.97 to 1.03. You can find a real 

number for a special date (such as the 189 day: July 
8 for this image used is 1.0167).

From Conversion to TOA Reflectance Digital Num-
ber (DN) of Landsat-8: OLI band data can also be 
converted to TOA planetary reflectance using reflec-
tance-rescaling coefficients provided in the product 
metadata file (MTL file). The following equation is 
used to convert DN values to TOA reflectance for 
OLI data as follows (USGS 2014) :

                        ρλ' =  MρQcal + Aρ              (4)

Where, Mρ = Band-specific multiplicative rescaling 
factor from the metadata, Aρ = Band-specific additive 
rescaling factor from the metadata, Qcal = Quantized 
and calibrated standard product pixel values (DN),    
ρλ' = TOA planetary reflectance, without correction 
for solar angle. Note that   ρλ' does not contain a 
correction for the sun angle. TOA reflectance with a 
correction for the the sun angle is then:

                ρλ'                      ρλ'
ρλ= —————  = ——————           (5)        
            cos (θsz)               sin (θSE)

Where, ρλ = TOA planetary reflectance, θSE = Local 
sun elevation angle. The scene center sun elevation 
angle in degrees is provided in the metadata, θSZ = 
Local solar zenith angle ; θSZ = 90º – θSE .

For more accurate reflectance calculations, per 
pixel solar angles could be used instead of the scene 
center solar angle, but per pixel solar zenith angles are 
not currently provided with the Landsat-8 products.

NDWI and DNDWI calculation

The Normalized Difference Water Index (NDWI) is 
a remote sensing derived index estimating the leaf 
water content at canopy level. The NDWI is a remote 
sensing based indicator sensitive to the change in the 
water content (Wang et al. 2006). The NDWI, which is 
also called the leaf area water-absent index, could be 
an alternative for optical remote sensing to map flood-
ed areas. It is possible since this index estimates the 
water content within vegetation (Gao 1996). NDWI 
is computed using the Near Infrared band (NIR) and 
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Table 3. Comparison land cover and post-classification between Landsat-8/OLI and Landsat-5/TM.

 Landsat-5 (TM) 1992 Land cover change Landsat-8 (OLI) 2017
Classify area Sum % Sum % Sum %  

Deep water bodies 229 0.30% 281 +0.5 510 0.80% 
Shallow water bodies 445 0.70% 434 +0.6 879 1.30%
Slight water bodies 3567 5.30%                  – 593                 – 0.9 2974 4.40%
Other land cover 48943 72.80% 3664 +5.4 52607 78.20%
Sparsely vegetated area 12081 18.00%                – 4302               – 6.4 7779 11.60%
Aggregate vegetated area 1991 3.00% 516 +0.7 2507 3.70%  
               

the Short Wave Infrared band (SWIR 1) reflectances: 

NDWI = (NIR–SWIR1) / NIR+SWIR1
Where, NIR = band (4), SWIR1 = band (5) in Landsat-5 (TM).
Where, NIR = BAND (5), SWIR1 = band (6) in Landsat-8 (OLI).

The NDWI product is dimensionless and varies 
between –1 to +1, depending on the leaf water content 
but also on the vegetation type and cover (Fig. 2). 
High values of NDWI correspond to high vegetation 
water content and to high vegetation fraction cover. 
Low NDWI values correspond to low vegetation 
water content and low vegetation fraction cover. In  
period of water stress, NDWI will decrease.

The post-classification method, this technique 
compares and computes NDWI values between im-
ages acquired on two different dates. In order to apply 
NDWI image differencing, the individual NDWI 
image of each date was generated with a range of 
values from. Histogram equalization enhancement 
was used to modify these values so that all values 
occurred with equal probability to range 0–255 for 
TM  images and 0–65536 for OLI images.

This step was followed by creating NDWI dif-
ference image (DNDWI) through the subtraction of 
the NDWI image of one date from that on another 
date (Dai et al. 2010). In this study, the NDWI 1992 
image was subtracted from the NDWI 2017 image 
as  shown in the equation (7) :

               DNDWI = NDWI (2017)–NDWI (1992)            (7)

To identify the changed areas in a different date 
image, a threshold technique based on differencing 
image histogram was selected. In this method, the 
significant changes were found in the tails of the 
histogram distribution while pixels showing no sig-

nificant change had a tendency to be clustered around 
the means. The first step was to select the threshold, 
where zero is considered non-change area while 
values bigger or smaller than zero are considered as 
area of change. Finally, a change / no change map 
was created between 1992–2017.

Classification and accuracy assessment

In the present study, Landsat data of both dates were 
independently classified based on the NDWI values 
range from –1 to +1. The vegetation, water, cloud and 
snow reflect more in the near infrared band than they 
do in the Short Wavelength Infrared band and there-
fore, they have positive NDWI values, whereas, bare 
soil and rock have a negative NDWI value. Healthy 
green vegetation, on the other hand, has stronger near 
infrared reflectance thereby providing NDWI  values  
close to +1. Based on this information, the two-date 
NDWI images were classified into 6 classes by using 
the NDWI  threshold ranges technique or tolls in 
ENVI 5.3 software for preparing the region of inter-
est. The result of Landsat-8 (OLI) images indicates 
that sparse vegetation NDWI values fall between 0.1 
and 0.2 ; while dense or aggregate vegetation NDWI 
values range from 0.2 to 1. Similarly, NDWI values 
less than 0.1 represent water body and areas without 
vegetation cover.

The result of Landsat-5 (TM) images indicates 
that sparse vegetation NDWI values fall between 0.07 
and 0.17 ; while dense or aggregate vegetation NDWI 
values range from 0.17 to 1. Similarly, NDWI values 
less than 0.07 represent water body and areas without 
vegetation cover. Thereafter, the region interest was 
selected and the maximum likelihood supervised 
classification algorithm was  applied to generate land 
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cover for the two dates.

Results and Discussion

NDWI images results

The result of this process was a gray scale NDWI im-
ages representing the amount of water and vegetation 
present at each time. Examining a grayscale of the  
NDWI  for each successive year was a visually sim-
plistic way to  analyze the progression of vegetation 
and water body area over the 26 year period.

In the first two images in Figs. 3 and 4, areas with 
healthy and dense vegetation are white while areas 
that are gray (little or sparsely vegetation area),and 
areas where no vegetation exists are black. The while 
area which represents vegetated areas and typical 
water has stronger near infrared reflectance. This 
means that most of the visible light (Short Wavelength 
Infrared) was used for product biomass thereby pro-
ducing NDWI values ranging between 0.04 and 1. 
This represents regions plants with good  condition,  
high leaf biomass, canopy closure and vegetation with 
high chlorophyll content (Landsat 8 2015, Tollefson 
2013, Yang et al. 2015). Conversely negative NDWI 
values were recorded in a dark area. This is because of 
the fact that features reflect more in the visible band 
(Short Wavelength Infrared) than  they do in the near 
infrared band, indicating regions of low vegetation 
and bare soil and rock (Knight and Kvaran 2014). To 
indicate subtler details, the gray  scale NDWI results 
both images reclassified to 6 colored areas. The green 
color use to represent plants with good condition, 
high leaf biomass, canopy closure and vegetation 
with high chlorophyll content. This area involves 
aggregate and sparsely vegetated  regions. The blue 
color use to represent rivers, lake, pond and other 
typical water bodies area. This area represents deep, 
Shallow or Slight Water bodies regions. The brown 
color use to representation of other land cover. This 
area includes bare soil and rock.

DNDWI results

After performing a differential analysis on the 2 
NDWI results, the differences between the vegetat-
ed areas and unvegetated areas can be clearly seen 

in Fig. 5. In the DNDWI image Fig. 5 regions that 
have experienced changes are assigned in 5 class, 
while regions with little or on changes are shown in 
colored area. Likewise, dark blue areas are regions 
that have increase depth or dense of water body and 
light blue areas are regions that have decrease depth 
or dense of water body. Brown area are regions that 
have no change land cover. Dark green areas are 
regions that changes to aggregate of vegetation area 
and light green areas are regions that changes to sparse 
vegetated area.

Land cover maps and accuracy
assessment

The NDWI values were divided into six main class-
es: Deep water bodies, Shallow water bodies, Slight 
water bodies, aggregate vegetated area, sparsely 
vegetated area and other land cover the classification 
maps were generated for two time as shown in Fig. 
5.  These maps are not very useful without quanti-
tative statements about their accuracy. The accuracy 
assessment process was done using confuse matrix 
on the land cover maps which is tabulated in Table 
2. It is found that, the overall accuracy and the kap-
pa coefficient obtained using maximum likelihood 
classifier for 1992 are 92.23% and 0.85, while in the 
year 2017, 93.1% and 0.84 were obtained as shown 
in Table 2. In addition, the users accuracies for both 
time for all classes exceeded 84% and 92% respec-
tively. Furthermore, the producers accuracy (2017) 
exceeded 87% of all the classes.This implies that 
the classification was done with the highest accuracy 
using the maximum likelihood classifier. 

Land cover change patterns

The individual class areas and change statistics 
from post-classification technique for the 2 time are 
summarized in Table 2. The last two columns in that 
table show the total area and percentage change in 
area for each land cover type from 1992 to 2017. The 
results show that in 1992, the water bodies class was 
4241 km2, sparse veg 12081 km2 aggregate veg 1991  
km2 and non-veg about 48943 km2 respectively. By 
2017, the water bodies class was 4363 km2, sparse 
veg 7779 km2, aggregate veg 2507 km2 and non-veg 
about 52607 km2 respectively.
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From Table 3 and Fig. 5, it can be observed that there 
is a drastic decrease in the sparse vegetation shows 
a decrease of 4302 km2 (6.4%). In contrast, the ag-
gregate vegetated area was increased about 516 km2 
(0.7%). The highest increase occurring in no vege-
tation class (Other land cover) of 3664 km2 (5.4%), 
the Deep water bodies and Shallow water bodies 
were increase 281 km2 (0.5%) and 434 km2 (0.6%) 
respectively, in contrast, the was decreased about 
593 km2 (0.9%). This means that most of the green 
land was changed to bare land or no vegetation area.

Conclusion

Generally speaking, the research results show that, 
the field area or planted areas are at risk of losing 
vegetation. Vegetation area is the first effectible about 
climate change condition in recent years annual rain-
fall of this area (Karun basin) was decrease that this 
condition cause to decrease sparsely vegetated area 
and Slight water bodies. Although Deep water bodies 
and Shallow water bodies have increased over the 
studied period. But the increase in unions is abnormal 
and not due to increased atmospheric precipitation in 
attention to performance several irrigation projects, 
water structures, water transfer lines and minimum 3 
big dames in this basin its normally that Deep water 
bodies and aggregate vegetated area was increased. 
Also, the results of this study may indicate a decrease 
in the surface water source as well as a decrease in 
natural plant tissue during the study period. This 
phenomenon is due to the development of agricultural 
sector and the reduction of surface water resources 
in the Karun basin.
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