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ABSTRACT

The present study was carried out to check the effect 
of gypsum on the plant growth promontory rhizobac-
teria. Ten bacterial isolates were isolated from agricul-
tural field  of the Shobhit University Gangoh, under 
onion cultivation in the year 2018. These bacterial 
isolates were checked for the plant growth promoting  
activities  like  phosphate,  zinc   solubilization and 
production of siderophore, hydrogen cyanide and 
Indole acetic acid. Two bacterial isolates (AP1 and  
AP2),  were showed best plant growth properties and 
further checked for their growth in presence of gyp-
sum which showed enhanced growth pattern in the 
presence of  20 mg L-1 gypsum. Results suggest that  

the  application  of  gypsum enhances the bacterial 
growth  nutrient broth as well as protein content in 
presence of gypsum and can be used in bioformu-
lations to increase the shelf life of bioinoculants.
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INTRODUCTION

Plant  growth  promoting rhizobacteria (PGPR) play 
a vital role in  agriculture production by increasing 
the nutrients  uptake (Gonzalez et al. 2015, Chaud-
hary et al. 2021b). Plant growth by PGPR can be 
enhanced by direct or indirect mechanisms.  In 
direct mechanism, plant growth may be boosted by 
mechanisms like nitrogen fixation, phosphate and 
potassium solubilization (Khan et al. 2014) and 
production of substances like Indole acetic acid, 
1-amino-cyclopropane-1-carboxylate (ACC). While 
in indirect mechanism, enhanced plant growth by 
PGPR may be achieved by decreasing the harmful 
effects of phytopathogenic microorganism by pro-
duction of antibiotics or development of systemic 
resistance in the plant (Kumar et al. 2018). There 
are two main types of PGPR,  extracellular PGPR 
(ePGPR) and intracellular PGPR (iPGPR). Bacteria 
like  Azotobacter,  Serratia,  Bacillus,  Agrobacteri-
um   belong to  the  ePGPR  class and microbes like 
All  orhizobium, Bradyrhizobium, Mesorhizobium, 
Rhizobium  belong  to  iPGPR  category.  Phosphorus 
in soil is present in soluble form, so it is not easily 
absorbed by plants. PGPR helps plant in absorption of 
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phosphorus by converting  it  into  soluble  forms  by  
mechanisms  like  mineralization and solubilization 
(Kumari et al. 2021).  Examples of microorganisms 
involved in phosphorus solubilization include Ba-
cillus,  Arthrobacter, Erwinia, Flavobacterium  and  
Serratia  (Sharma et al. 2013,   Otieno et al. 2015).  
Iron is an important  micronutrient  required by 
the microbes and being highly insoluble is often a  
limiting  condition in the rhizosphere.  Iron binding 
ligands (siderophores) for iron acquisition to have a 
competitive advantage over other microorganisms. 
These siderophores bind to ferric iron in the soil or the 
root zone and are then taken up using outer membrane 
receptors (Beneduzi et al. 2012). HCN is produced  by  
bacteria such as fluorescent  Pseudomonas, which has  
been long known for its beneficial effect on the plants 
in disease suppression (Sahu et al. 2018). Indole  
acetic  acid  (IAA) is a natural auxin which is also 
synthesized in many species of non-seeded plants, 
many bacteria, fungi and algae.  The amino acid 
tryptophan is commonly regarded as the precursor 
for the biosynthesis of auxin in plants (Varalakshmi 
and Malliga  2012).  There are various bacterial gen-
era which are involved in IAA production. Bacteria 
Pantoea agglomerans is reported for the production 
of maximum IAA  at pH 7(Apine and Jadhav 2011). 
Azolla could be a consistent provider of tryptophan 
for  IAA  producing   microbe in its rhizosphere  (Raut 
et al. 2017).   Nostoc  and   Anabaena  were also ef-
ficient in enhancing the germination and growth of 
wheat seeds and exhibited significantly high protein 
accumulation by IAA production (Prasanna et al. 
2009).  Ammonia accumulation is reported to increase 
pH of soil which helps in maintaining alkaline  con-
dition of the soil and inhibit growth of many fungi 
and Nitrobacter.  Ammonia production is important 
traits which is beneficial for the crops.Gypsum is 
an essential source for plant nutrients like calcium 
and sulfur and can improve overall plant growth.  
Gypsum amendments can also improve the physical 
properties of some soils (especially heavy clay soils). 
Such amendments promote soil aggregation and thus 
can help prevent dispersion of soil particles, increase 
water infiltration rates and movement through the soil 
profile  (Dontsova et al. 2005). Gypsum improves 
the chemical and physical properties  of  soil and 
makes agriculture more sustainable. Nano  form  
of  gypsum  enhances the growth of  Pseudomonas 

taiwanensis  and  Pantoea  agglomerans  @  50 
ppm concentration  (Chaudhary and Sharma 2019).  
Present study  was  planned  to isolate the  best 
PGPRs  from  agriculture  field  and their  growth  
pattern and protein content in the presence of gypsum.

MATERIALS  AND  METHODS

Collection of soil sample

Soil sample were  collected  from  the  agriculture field 
of Shobhit University,  Gangoh, Saharanpur, Uttar 
Pradesh under onion cultivation in the year 2018. 

Bacterial isolation

Soil samples were serially diluted up to 104  times and  
plated  on nutrient agar medium. 1 ml of the diluted 
sample  was  poured on  20 ml of nutrient agar.   Mixed 
properly  in  clockwise  and  anticlockwise directions. 
Then inoculated plates were incubated at 300C for 
24 h. Ten  colonies  with different  morphology were 
selected and purified on nutrient agar.

Plant growth properties of bacterial isolates

Bacterial isolates were screened qualitatively for 
solubilization   of  phosphorus and zinc, Indole acetic 
acid, siderophore, Hydrogen Cyanide and ammonia 
production.

Phosphate solubilization

Bacterial  cultures were spot inoculated on  Pikovska-
ya medium (HI media) and incubated for 4 to 6 days 
at 280C.  Formation of halo zone around bacterial 
colony indicates phosphate solubilization by the 
bacteria (Pikovskaya 1948).

Zinc solubilization

Screening  of Zn solubilizing bacteria was done on the 
basal medium supplemented with 0.1%  ZnO by the 
method of   (Saravanan et al. 2004).  Recovered  bacteria   
were  tested for their Zn solubilizing potential based 
on halo zone formation around the bacterial colonies.
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HCN production

HCN  production by bacterial isolates were streaked 
King’s B  agar medium supplemented with glycine. 
Sterile  filter  paper was  soaked in picric acid solution 
and placed on the upper lid of the Petri plate. Plates 
were sealed with parafilm and incubated at 28oC for 
48 h. Change in color of the filter paper from yellow 
to brown indicates HCN production (Bakker and 
Schippers 1987).

Ammonia  production

Actively growing bacterial cultures were inoculated 
in 10 ml Peptone water and incubated for 72 h at 
27oC in a rotatory  shaker at 100 rpm. Production 
of ammonia was tested by adding Nessler’s reagent 
(1ml) to the bacterial culture after 4 days of incubation 
(Cappuccino and  Sherman 1992).  Presence  of  yel-
low to brown color indicates production of ammonia.

Indole acetic acid production 

Test bacterial cultures were inoculated in 5 ml of 
sodium succinate broth, supplemented with 100 µg 
/ml tryptophan (Gordon and Weber 1951).  After 
incubation at 28±10C for 48 h, broth was centrifuged 
for 10 min at 10,000 rpm.  After centrifugation, one 

ml culture supernatant was mixed with Salkovaski re-
agent (2 ml) and incubated at 300C for 25 min in dark  
to  observe  color change.  Development  of pink color 
indicates a positive test for IAA production by the test 
bacteria.  Optical density of the colored mixture was re-
corded at 530 nm by using visible spectrophotometer.

Siderophore production

Production of siderophore in bacterial isolates were 

Fig. 1.  PGPR properties of AP1 and AP2 (A) Phosphate solubilization (B) Zinc solubilization (C) HCN production.

Fig. 2.  Ammonia and IAA production by bacterial isolates AP1 
and AP2.
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examined by using the method of (Schwyn and Nei-
lands 1987).  Bacterial cultures were spot inoculated 
on CAS agar and then incubated at 300C for 60 to 72 
h.  Formation  of orange or yellow halo zone around 
the bacterial colony indicates a positive test for sid-
erophore production. 

Effect  of gypsum on the growth of 
bacterial isolates

Effect of gypsum (20 mg L-1) was observed on the 
growth pattern of  AP1 and AP2.  Different treatments 
used are as follows.Blank (without bacterial culture 
and gypsum), AP1 (only bacterial culture), AP2 (bac-
terial culture), AP1+G (bacterial culture with gyp-
sum), AP2+G (bacterial culture with gypsum).Stock  
solution of gypsum was sonicated at 20 KHz for 
5–10 min. Aliquot from the stock solution of gypsum 

was added to nutrient broth.  Broth was autoclaved 
at 15 lb psi for 20 min. 20 µl of the active bacterial 
culture  was inoculated into 50 ml of sterile nutrient 
broth  with  or  without  gypsum. Aliquots of 3 ml 
were regularly with drawn  at an interval of 0, 24, 36, 
48 and 72 h,  taking the absorbance at 600 nm under 
visible  spectrophotometer.

Extraction of protein and 
their quantification

For this bacterial pellets were washed with Tris-Cl 
pH (6.8),  centrifuged the pellets then suspended in 
extraction  buffer (400 µl) and placed in water bath for 
10 min. Protein samples were centrifuged and stored at 
-40C.  Absorbance was taken at 595 nm to quantify  the 
protein by using  BSA as a standard (Bradford  1976).

Fig.  3.  Culture morphology and gram staining of AP1 and AP2.
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Statistical analysis

Analysis of  variance (ANOVA) was done with statis-
tical software SPSS Statistics (version 19.0). All the 
experiments were conducted in triplicate. Results are  
considered statistically significant at 95%  confidence  
interval (p < 0.05).

RESULTS

Phosphate  solubilization

Six bacterial isolates solubilized phosphate on Piko-
vaskaya medium. AP1 and AP2 showed maximum P 
solubilization. Four isolates did not solubilize phos-
phate compounds (Fig. 1).

Zinc solubilization

Out of ten bacterial isolates, three isolates did not 
show zone of clearance on basal medium supple-
mented with ZnO. AP1 and AP2 showed maximum 
solubilization (Fig.1).

HCN production

HCN is produced by many rhizobacteria and helps 
in control of phytopathogens. Only two isolates were 
showed (AP1and AP2) HCN production (Fig. 1).

Ammonia  production 

All  the  bacterial isolates showed positive response 

for ammonia production. AP1 and AP2 gave best 
results for ammonia production (Fig. 2).

IAA  production

All the ten bacterial cultures showed IAA production. 
Two isolates (AP1 and AP2) produced maximum 
Indole acetic acid. Eight isolates gave intermediate 
results (Fig. 2). 

Siderophore  production

Out of ten bacterial isolates, AP1 and AP2 showed 
maximum siderophore production. Two isolates 
showed moderate production range, six isolates 
showed minimum production of siderophore on CAS 
medium (Fig.1C).

Culture  identification

On the basis of best PGPR properties AP1 and AP2 
were selected for further studies. AP1 was gram pos-
itive and long rods while AP2 was gram negative and 
had short rods (Fig. 3).

Effect of gypsum on the growth of
bacterial isolates

Both bacterial isolates AP1 and AP2 increased 
the growth in presence of gypsum 20 mg L-1 

concentration. Optical density of bacterial iso-
lates taken at 600 nm and supported positive 
response of gypsum on bacterial growth (Fig. 5).

Fig. 4.  Effect of gypsum on the growth of AP1 and AP2.
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Effect of gypsum on bacterial protein
concentration

Expression of proteins were increased in presence of 
gypsum in bacterial cultures. Maximum protein con-
tent was observed in AP1+G (42.13 mg/ml) followed 
by AP2+G (33.50mg/mL) (Fig. 5).

DISCUSSION

PGPRs   are the soil microbes play an important role in 
agricultural field to improve plant growth, productivi-
ty and soil health (Khati et al. 2017,  Chaudhary et al. 
2021a).  Application of different bacterial groups have 
the ability to induce growth promotion on diverse  
crop production  (Nieto-Jacobo et al.  2017,  Chaud-
hary et al.  2021c).  Various plant and fungal species 
such as Bacillus, Pseudomonas, Rhizobium and As-
pergillus, Alternaria and Trichoderma can be used 
as PGPR  (Khati et al. 2018; Kumari et al. 2020).  In 
this study two bacterial isolates AP1 and AP2 isolated 
from agriculture field showed best PGPR  properties. 

Phosphorus is a major plant growth  limiting 

nutrient. It is a structural component of phosphopro-
teins and phospholipids involved  in  photosynthesis 
(Anand et al.  2016).  It helps in root elongation and 
proliferation. Phosphate solubilization by PGPRs 
occurs by  lowering the pH by the production of 
low molecular weight organic acids, liberation of 
extracellular  enzymes like acid phosphatase and the 
release of P during  substrate   degradation  (McGill 
and Cole 1981, Khan et al. 2014). Pseudomonas 
putida, Bacillus sp., Bacillus subtilis, Pseudomonas 
aeruginosa  and  Paenibacillus  polymxa were report-
ed to show solubilization of phosphate compounds 
by production of organic acids  (Agri et al. 2021 ; 
Khati et al. 2019a).  AP1 and AP2  showed  maximum 
phosphate solubilization.

Zinc is an essential micronutrient which is re-
quired for plant growth. Zinc compounds in the soil 
present in unavailable form   which are solubilized by 
the zinc solubilizing bacteria. These microbes convert 
applied inorganic zinc to available forms (Kamran 
et al. 2017).  There are various zinc solubilizing 
bacterial species like Bacillus sp., Pseudomonas sp., 
Gluconacetobacter  sp. and   Acinetobacter  sp. etc. 

Fig. 5.  Protein content in bacterial isolates in presence of gypsum.
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have been reported by (Vidyashree 2016). In this 
study seven bacterial isolates were positive for zinc 
solubilization, maximum was solubilized by AP2.

HCN is a secondary metabolite and HCN pro-
ducing bacteria have antagonistic property against 
the fungal pathogens and has biocontrol activity 
(Audrain et al. 2015). (Kumar et al. 2014) reported 
that HCN producing organism inhibited the sclerotia 
of Macrophomina phaseolina. In our study, HCN 
production was found in lesser extent only 2 isolates 
exhibited HCN production.  Ammonia production 
also plays an important role for plant growth. Ammo-
nia is ubiquitous in nature and acts as a substrate to 
produce nitrate (Amoo and Babalola 2017). Ammonia 
producing bacterial species makes it available to 
plants. Different bacteria are reported which are good 
ammonia  producers like Bacillus sp., Pseudomonas 
fluorescens, Rhizobium and Azotobacter sp. (Mishra 
et al. 2010; Khati et al. 2019b).  All the 10 bacterial 
isolates were found positive for NH3 production. 

Phytohormones play an important role as 
signals and regulators of growthand development 
in plants(Marques et al. 2010). Auxins, among 
them in particular, indole-3-acetic acid (IAA), are 
the most studied plant growth regulatorsand this 
includes physiological, biochemical and genetic as-
pects(Kukreti et al. 2020; Agri et al. 2021).Among 
all the isolates AP1 and AP2  showed higher IAA 
production 20.13 and 23.26 µg/ml respectively.
Azotobacter vinelandii, Azotobacter brasilense and 
Rhizobium also reported for IAA production found 
that Mesorhizobium loti produced 24 µg/ml IAA.

Iron is an important micronutrient required by 
most of the living systems including microbes. Some 
bacteria promote plant growth by producing low 
density iron chelator biomolecules called siderophore 
which act as chelating agents for iron. A potent sidero-
phore such as ferric siderophorecomplex, plays an im-
portant role in iron uptake by plants (Beneduzi et al. 
2012). Several bacterial isolates were reported to fa-
cilitate siderophore production like Bacillus megateri-
um, Bacillus cereus and Azotobacter which promotes 
growth of plants and suppress disease (Shilev 2013). 
In the present study, out of ten bacterial cultures 8 iso-

lates  were found  positive for siderophore production.
 
Bacterial cultures  AP1 and AP2 showed enhanced 

growth in the presence gypsum when added @ 20 
m L-1 in nutrient broth. The observation shows an 
interaction between gypsum and bacteria, which 
strongly supports the viability of PGPR isolates.
Application of nanogypsum increases the beneficial 
population in the roots of different plants  (Chaud-
hary et al. 2021d).  It was concluded that the gypsum 
supports  the  growth of bacterial isolates and does 
not  have any toxic effect on bacterial cultures. Effect 
of gypsum was checked on the protein content of the 
bacterial isolates. It was found that protein content 
was high in both bacterial isolates when treated with 
gypsum. This suggests that gypsum helps in growth 
and protein production which helps in sustenance. 

CONCLUSION

In the present study, two bacteria isolated from the 
agriculture field showed best PGPRs activities i.e., 
AP1 and AP2 respectively and also enhance in the 
growth pattern in presence of gypsum. It can be 
concluded that application of gypsum at 20 mg L-1 

concentrations  does  not  cause  any harmful effect 
on bacterial growth. Hence these bacterial isolates can 
be used  as  in  different crops for enhanced plant, soil 
health and productivity for managing the nutrients 
deficiency in agriculture soils.
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