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ABSTRACT

India is seventh largest country in the world with an 
area of 328.74 million hectares (Mha) and ranks 10th 
in the list of most forested nations in the world (FAO 
2015) with 80.20 Mha of forest and tree cover. India’s 
forest and tree cover accounts for about 24.56% of the 
total geographical area of the country (ISFR 2019). 
The forests across the world are under the immense 
impacts of climate change which varied across the 
continents with some forest types being more vul-
nerable than other (Lucier et al. 2009, Fishlin et al. 
2009). Forest plays a crucial role in maintaining glob-
al climate change through carbon cycle. This paper 
investigates the potential of ALOS PALSAR-2 data  
for the assessment of forest above ground biomass in 
sub-tropical forest of Uttarakhand. The study explores 
the retrieval of AGB in sub-tropical forests using 
non-parametric method, field data and three sets of 
ALOS PALSAR-2. The non-parameterc method  has 
resulted that the plot level AGB in sub-tropical forest  

(Kempti Forest Range)  ranged from 2.35 t/ha for 
open forest to 317.99 t/ha for mature forests. In the 
sub-tropical forest the obtained regression equation 
y =2.724ln (x)-28.725 derived from biophysical pa-
rameters and backscatter coefficients of L-banf HV 
polarization was used for modeling of AGB due to 
highest coefficient of determination and least RMSE 
(R2 = 0.85, RMSE = 57.41 t/ha). The modeled AGB 
ranged from 1.02 t/ha to 252.31 t/ha, with an average 
of 95.73 t/ha. It is concluded that microwave data is 
significantly able to map and estimate forest above 
ground biomass operatively over sub-tropical forests.
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INTRODUCTION

Forest plays a crucial role in maitaining global climate 
change through carbon cycle. the amount of carbon 
present in the forests depends upon the biomass per 
unit area. The biomass is defined as the total amount of 
above ground living organic matter in trees expressed 
as oven dry tons per unit area (FAO). The accurate 
quantification of biomass in required to understand 
the global carbon pool changes, sustainability and the 
productivity of the forests (Whittaker and Woodwll 
1969, Anderson 1971, Esser 1984, claturvedi and 
Singh 1987, Rawat and Singh 1988, Malhi et al. 2004, 
Goetz et al. 2009). The estimation gives us a statistics 
about the amount of Carbon dioxide sequestered from 
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the atmosphere by the forests and the amount eimitted 
due to deforestation and forest fire. It is important to 
know the distribution of biomass from local to global 
levels, for calculating the sources and sink of carbon 
and to monitor the change through time. There are a 
number of ways to estimate and monitor forest above 
ground biomass (Brandeis et al. 2006, Soenen et al. 
2010, FAO 2015). Now, the need for estimation has 
realized but onne of the method has developed which 
estimates the accurate amount of biomass.

In earlier days destructive method was adopted 
which was also known as the harvest method. Ac-
cording to Gibbs et al. (2007) this method was the 
most direct method for the estimation of above ground 
biomass and the carbon stocks stored in theforest 
ecosystem. although this method is limited to small 
area but it determines the biomass accurately for that 
particular area. This method is time and resource con-
suming, strenuous, destructive, expensive and thus 
not applicable for large-scale analysis. This method is 
used for development of location and species-specific 
allometric equations used for accessing biomass on 
large scale (Navar 2009, Segura and Kanninen 2005).  
The allometric equations are the most widely used 
method for the estimation of biomass (Chaturvedi 
and Singh 1987, Rawat and Singh 1988, Saldarriaga 
et al. 1988, Uhl et al. 1988, Rana et al. 1989, Adhikari 
1992, Fearnside and Guimaraes 1996, Alves et al. 
1997, FAO 1997, Chave et al. 2005, IPCC 2006). 
The Allometric method is based on the principle 
that every components of trees shows relationship 
with each other. It is a non-destructive method for 
the estimation of biomass without felling and thus 
widely used.

Observations and measurements by satellites 
have nowadays become the primary source for esti-
mating AGB in tropical forests (Lu 2006). The science 
of Remote Sensing has played an important role in the 
mapping and monotoring of frest biomass and carbon 
due to its synoptic view of forest and surrounding 
areas. Since no remote sensing instrument can directly 
measure either biomass or carbon content, additional 
in-situ data is required for establishing a relationship 
between the remote sensing signal and the biomass 
(Dong et al. 2003, Rosenqvist et al. 2003). Biomass 
estimation using optical remote sensing data is usually 

realized by revealing the correlation between biomass  
and spectral responses and/or vegetation indices de-
rived from multispectral images (Sader et al. 1989, 
roy and Ravan 1996, Fazakas et al. 1999, Nelson et al. 
2000, Steininger 2000, Mickler et al. 2002, Foody et 
al. 2003, Phua and Saito 2003, Calvao and Palmeirin 
2004, Zheng et al. 2004, Lu 2005, Chiesi et al. 2005, 
Gibbs et al. 2007, Mycong et al. 2006, Tan et al. 2007, 
Bastin et al. 2014). The earlier studies had integrated 
the vegetation index directly to vegetation amount 
(above ground biomass) and primary productivity 
(Tucker et al. 1983, Goward and Dave 1987, Huete et 
al. 2002, Nakaji et al. 2008). Optical remote sensing  
technologies, theoretically, have limited capability 
to predict forest biomass since the recorded spectral 
responses in optical images are mainly related to 
the interaction between the sun radiance and forest 
stand  canopies. Thus, the correlation between forest 
biomass and spectral responses or vegetation indices 
is usually poor, especially for mature forests inwhich 
spectral responses become saturated and lose sensitiv-
ity to trunk and branch biomass. However, frequent 
cloud coverage in the inner tropics often hampers 
the acquisition of high quality data. Another major 
disadvantage is the low saturation level of the spectral 
bands and the derived spectral indices regarding the 
biomass estimation (Gibbs et al. 2007, Nichol and 
Sarker 2011).

Most of the studies with optical sensors have 
estimated biomass indirectly because of the several 
inherent limitations of optical data such as: Inability 
to  penetrate the vegetation canopy, insufficient sen-
sitivity to forest structure and above ground biomass, 
inadequate temporal frequency because of persistent 
clond cover. It is proposed to evolve methods to 
improve the assessment of phytomass/Carbon using 
optical and Microwave remote sensing data in differ-
ent representative test sites in different ecosystems 
across the Uttarakhand state and suggest method 
for impovements in estimates of biomass. It has 
been demonstrated that there is a strong relationship 
between backscatter coefficients and above ground 
biomass within a particular forest types (Baker etal. 
1994, Le Toan et al. 1992, Dobson et al. 1992, Imhoff 
1995). Taking the advantage of the deeper penctration 
of longer wavelength and greater saturation (dobson 
et al. 1992, Kasischke et al. 1997, Luckman et al. 
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1998, Hoekman and Quinones 2000, Luckman et 
al. 2000, Saatchi et al. 2007, Mitchard et al. 2014) 
in the  forest canopy, an attempt will be made to 
develop empirical relationship between Microwave 
backscatter from satellite and airbome platforms and 
the biomass levels so as to estimate the forest biomass 
of the study area.

Studu area

The study lies on the outermost ridge of the Hima-
layas. slopes are mostly steep to precipitous. The 
altitude of these forests vary from about 1500m to 
2330 m above sea level. The Mussoorie forest divi-
sion is a longitudinal depression in the north-western 
complex of the Himalayan range, and thus constitutes 
an important relief feature of geographic significance.  
Vegetation of the study area is climatic climax and 
falls under 12/C-Himalayan moist temperate and 
moist deciduous forest. Predominant species of this 
area are Cedrus deodara, Quercus leucotrichophora, 
Rhododendron arboreum, Shorea robusta, Mallotus 
phillippensis, Nyctanthesarbortristis. Lanneacoro-
mandalica, bauhinia purpurea, Toonaciliata, Adina-
cordifolia, Boehmariarugulosa mixed with trees of 
Qugeiniaoogenensis, Terminaliatomentosa, Cassia 
fistula and Acacia catechu.Undergrowth mainly 
consists of Murrayakoenigii, Colebrookiaoppositi-
folia, Woodfordiafruticosa, Adhatodavasica. Lantana 
camara and Eupatorium adenophorum. The figure 
represents the distribution of forest inventory plots 
used in the study.

MATERIALS  AND METHODS

The L-band ALOS PALSAR-2  data were used in the 
study. The data were acquired over different forest 
types of Uttarakhand is the month of February, March 
and  April. The polarization of data varies from Sin-
gle polarization to Quad polarization. The incidence 
angle of the data ranges between 32.90 to 35.80. The 
rediometric calibration, multilooking, speckle fil-
tering, geocoding and backscatter image processing 
have been carried out for every data set. Different set 
of images were produced to know the best possible 
image for selection of sample plots.

In the current study a plot size of 25m×25m 

was selected for the measurement of parameters. 
The size of  the plot was selected in such a manner 
that it resembles the pixel size of the stellite data. 
The inventories carried out by Forest departments, 
Forest survey of India, Forest Research Institute,HRS 
in biodiversity characterization project have taken a 
plot sizeof 0.1 ha i.e. 31.62 m × 31.6 m for growing 
stock, volume and biomass estimation. But, in this 
study the size was selected so because the in-situ 
interpolation of 0.09 ha to 0.1 ha lead to uncertainty 
addition in forest biomass estimation. Atotal of 62 
plots were laid in the forest area, out of which 40 
plots were used for modelling and 22 plots were left 
for the validation of the model. The samples were 
laid out inthe region which were least affected by the 
topographic distortions. It saves the energy as well as 
time to carry out thefield inventory. Thederived image 
variables were found to beefficient in discriminating 
different forest density. This indicates that polariza-
tion manipulation techniques can be considered as 
an image enhancement technique that is useful for 
identifying forest growth levels. It helps in laying of 
sample plots in the study area.

RESULTS  AND  DISCUSSION

The field inventory data were collected in Kempti For-
est Range for 62 forest plots using stratified random 
sampling. The stand structure defines thedistribution 
and representation of size class of trees in a stand. 
The number of trees within a sample plot ranges from 
a minimum of 1 to a maximum of 95. The average 
number of trees within a sample plot were found to 
be 30. The top height within theplots eanged from a 
minimum of 6m to a maximum of 35m. The average 
height was found to be 23m. The basal area ranged 
from a minimum of 0.02 m2 to a maximum of 4.07 m2. 
The average basal area was found to be 1.59 m2.  The 
stem volume ranged from a minimum of 0.1 m3  to a 
maximum of 37.96 m3. The stem volume was found 
to be 13.45 m3 The plot level biomass ranged from 
a minimum of 2.35 t/ha to a maximum of 317.99  t/
ha. The average biomass was found to be 113.23 t/
ha. The regression analysis has been carried out to 
understand the amount of change in one variable hat 
is associated with change in other variable. The aim 
of this model is to determine the straight line rela-
tionship that connects basal area and biomass. Based 
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on the scatter diagram of Fig.1, there appears to be a 
definite relationship between basal area and biomass. 
A significant coefficient of determination (R2 = 0.90) 
has been observed between both the variables. An 	
R2 of 0.90 means that 90% of the variation in the 
biomass can be explained by the regression line.

Biomass modeling and estimations in 
sub-tropical forest

The ALOS PALSAR-2 processing was carried out 
using SNAP software as well as SARScape. The 
dependence of the backscatter upon weather condi-
tions  strongly depends on the scattering mechanisms 
occurring in a forest. In sparse forests, where the 
canopy covers only a small fraction of the forest 
floor, the ground contribution to the backscatter is 
dominant.  In dense, i.e. mature, forests instead the 
canopy covers most of the ground, therefore, the vol-
ume secattering within the vegetation layer makes the 
ground contribution less important. The backscatter 
trend can be expected to depend on the imaging con-
ditions and the forest structural characteristics. The 
backscatter coefficients (σ0) for the HH, HV and VV 
components were derived. The responses of all the 
three variables were different to biomass. The spread 
in the data depends on several factors. First, the small 
size of the forest plots and the errors in geolocation 
can often cause errors in extracting the exact back-
scatter values. Second, speckle in high-resolution 
radar imagery can  introduce variations in backscatter 
measurements over forests with similar AGB values. 
Finally, depending on the canopy architecture (branch 
and leaf orientation), canopy moisture content, spatial 

distribution of trees, soil roughness and moisture, 
and topography, the backscattering coefficients may 
vary for forests with similar above ground biomass. 
Moreover, the errors associated with the field data and 
allometric equations also contribute to the variations 
shown in backscatter plots.

Correlation analysis is widely used as a statistical 
analysis technique to study and model the relationship 
between two continuous variables such as forest bio-
mass and radar backscatter. To apply the correlation 
analysis, the pixel values of the PALSAR image and 
the variables at corresponding locations on the ground 
were extracted. In this case, the backscatters of HH, 
HV and VV polarizations as well as pixels values of 
all the variables derived were directly used as the 
predictors for the measured AGB of the sampling 
plots. The variable of each plot were correlated to 
produce  empirical functions or models in which 
the best correlation was selected and used for AGB 
prediction for the whole study area. The predicted 
AGB was presented in a thematic layer showing the 
distribution of AGB t/ha over the study area. The 
AGB values ranges from 2.35 t/ha for open forest to 
317.99 t/ha for mature forests. All the variables were 
then correlated with AGB that was obtained from the 
sample plots. The HH backscatter of all corresponding 
plots in the study area ranged from –20.01 to –4.81 
dB, with a mean of –11.6 dB. The HV backscatter 
of all corresponding plots in the study area ranged 
from – 25.5 to –10.41 dB, with a mean of –14.73 dB. 
The  VV backscatter of all corresponding plots in the 
study area ranged from – 24.23 to – 7.21 dB, with a  
mean of –12.96 dB.

Fig. 1.  Relationship between basal area Biomass in sub-tropical forest.
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Table 1.  Longarithmic correlation and coefficient of determination of AGB and derived image variables from L-band PLASAR 
polarizations.

     Variable                           Model                              R                R2                Adjusted  K2            Standard error          RMSE (h/ka)

	 HH	 y = 2.2929ln(x)-20.447	 0.814	 0.663	 0.654	 46.083	 69.18
	 BV	 y = 2.7241ln(x)-28.725	 0.854	 0.73	 0.723	 41.226	 57.41
	 VV	 y = 3.6631ln(x)-35.513	 0.738	 0.546	 0.539	 39.976	 92.33

All the polarization were used independently 
to  find the best fit model for biomass using 42 field 
inventory plots. The VV was found to be least sig-
nificant and can only explain about 54% (R2 = 0.54) 
of the variations in the biomass. It was followed by 

HH polarization which has explained nearly 66%  
(R2=0.66) of the variations in the biomass. HH-polar-
ized data are known to be less sensitive to biomass. 
It is commonly believed that HV polarized SAR 
data  have better sensitivity for biomass estimation. 

Fig. 2.  Relationship between above ground biomass (t/ha) and backscatter intensity: (a) HH (σo, dB); (b) HV (σo, dB; (c) VV (σo, dB).
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The goodness of fit was found to be maximum with 
the cross polarized HV backscatter image. It has 
explained about 73% of variability in the biomass of 
sub-tropical forests. This rells us that HV-polarized 
SAR data have the maximum potential to predict 
biomass. It was evident that adding more and more 
parameters using different processing techniques 
was unable to significantly improve the sensitivity 
of differently polarization data. Overall, the results 
showed that the correlation were of high significance 
for the estimation of biomass in the forest.Based on 
the correlation analysis, highest correlation with the 
coefficient of determination (R2) of 0.73 was observed 
with the backscatter of HV polarizations, thus the 
model was sciected as the AGB prediction model as 
it gave the best R2 compared to the other variables. 
The trend line indicates that the biomass  component 
has a logarithmic correlation to the backscatter. The 
relationship is asymptotic, increasing rapidly at lower 
AGB levels (i.e. up to 100 t/ha) but decreasing to-
wards higher AGB levels. The scatterplots showing 
the correspondences of AGB with all the variables 
are shown in Fig. 2 and the summary of all the model 
produced is listed in Table 1. The correlation analysis  
indicates that the above ground biomass has a loga-
rithmic relationship with the variables.

The relationship between backscatter coefficient 
and per plot biomass for each polarization is shown 
Fig. 3. The dynamic range of the L-band HV response 
is larger than that of the co-polarized response and 

the absolute level is lower because of the relatively 
weaker mechanisma that given rise to cross polarized 
backscatter.

The relationship between field biomass and 
simple radar intensity (HH, HV, VV) is well defined 
using 40 model plots (Fig.3), but the HV intensity data 
showed batter performance (adjusted R2 = 0.723) than 
any other single-polarization data. The poor result can 
be explained by the speckle noise in the raw (inten-
sity) SAR data compounded by the complex forest 
structure and rugged topography of the study area.

As the biomass changes from 1 t/ha to about 50 t/
ha, there is an about 9 dB increase in HH backscatter. 
When the biomass is > 50 t/ha, the HH backscatter 
gets saturated. The modeled HH backscatter shows a 
similar pattern as the HH SAR backscatter. Because 
there is about 5 dB dynamic range in HH backscatter, 
and because the model predicts that the backscat-
ter is mainly from the trunk-ground, the HH SAR 
backscatter may be linked to the trunk ground. The 
model also predicts that there is some contribution 
from canopy volume scattering, but its contribution 
is small. The contribution from surface backscatter 
and multiple path interaction of canopy-ground to the 
total backscatter are insignificant.

There is only an approximately 7 dB increase 
in VV backscatter when the biomass changes from  
1 t/ha to about 50 t/ha. When the biomass is >50 t/

Fig. 3. Relationship between AGB and different backscatter coefficients derived from sub-tropical forest.



721

 

ha, the VV backscatter gets saturated. Therefore, VV  
backscatter are not significantly used in modelling. 
The backscatter has a mixed contribution from canopy 
volume scattering, trunk-ground term and surface 
scattering. Because of the mixed contribution of 
three components, it will be difficult to isolate the 
scattering components.

In case of HV polarization, total backscatter is 
exclusively from thecanopy volume scattering. The 
saturation limit is too wide at this polarization, and 
thusit helps to design the algorithm to derive the forest 
biomass and carbon.

Referring to Table 1, the root mean square error 
(RMSE) of each estimating model was calculated 
based on the validation plots that were established 
in the study area. A total of 22 validation plots, were 
used to validate the estimates.

Model with variable VV describes 54%  of 
variability of forest AGB in the study area with the 
RMSE of 92.33 t/ha, which adds the uncertainty in 
predicting the biomass. It was reduced to 69.18 t/ha, 
with HH polarization as an input to the model. A large 
dip in Ramse (57.41 t/ha) has been observed with HV 
model. In hetrogeneeous forests, the HV polarizations  
are more sensitive to the canopy structure than HH 
and VV, therefore they correlate better with biomass.

Aboveground biomass distribution in
sub-tropical forest

The obtained regression equation y = 2.7241ln (x)- 
28.725 derived from biophysical parameters and 
backscatter coefficient of L-band HV polarization was 
used for modeling of AGB due to highest coefficient 

of determination and least RMSE (R2=0.85;  RMSE = 
57.41 t/ha). The biomass map represented  a modeled 
biomass map of the region. The results show that with  
an increase in biomass levels, backscatter coefficient 
also increases. As the biomass increases, backscatter 
coefficient also increases and subsequently attains 
saturation. The scattering mechanism at L.band in 
a forest canopy are mainly volume scattering in the 
canopy,double bounce scattering between trunks and 
the ground, and surface scattering from the forest 
floor. The study indicates that the variations in the 
above ground biomass in the study area were closely 
related to the canopy density of the forest as well as 
age of the forest stand.The AGB ranged from 1.02 t/
ha to 252.31 t/ha, with an average of 95.73 t/ha. The 
spatial biomass map was classified on the basis of 
forest density. The open forests (OF) wre categorized 
with biomass ,50 t/ha and represented in yellow. The 
Moderately dense forest (MDF) were categorized in 
the range of biomass from 50-150 t/ha and represented 
in green. The Very dense forest (VDF) have blomass 
> 150 t/ha and represented in dark green. The spatial 
distribution pattern of AGB in the Kempti forest 
range  explicity shows that majority of the area was 
at the range of<150 t/ha (VDF), followed by biomass 
range below 50 t/ha (OF) and least were fall under 
the category of MDF (50-150 t/ha) This has also been 
observed through ground data too. The total AGB of 
the study area wasthen calculated based on this dis-
tribution. The areas of different forest density classed 
were extracted (Table 2) The total AGB in a  prticular 
forest class was calculated by multiplying the aver-
age biomass with the area. The average biomass for 
Open Forest was found to be 1920 t/ha,  whereas it 
was 110.37 t/ha MDF and 163.23 t/ha for VDF. The 
modeled biomass shows a different story in  that area.  
It  has been  observed from the map (Fig. 4) that most 
of the area falls under the VDF category. But,it was 

Table 2.  Basic statistics of AGB and carbon in the study area extracted from the thematic map produced.

Forest Density                                                        Modelled Biomass                    Modelled Carbon                Carbon sequestration
      Class                            Total Area (ha)                     (tonnes)                                  (tonnes)                       Potential (tonnes carbon)

Open Forest (<50t/ha)	 2509.30	 48203.63	 22655.71	 81560.54
MDF (50-150 t/ha)	 1462.77	 161446.05	 75879.65	 273166.72
VDF(>150 t/ha)	 2612.44	 426428.66	 200421.47	 721517.29
Nf	 2190.52	    0.00	     0.00	     0.00
Total	 8775.03	 636078.35	 298956.83	 1076244.55                                                                                                                                     
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Fig. 4. Biomass map of Kempti Forest Range.

observed from the field that very small area under 
falls  under the category of VDF. It was then verified 
and concluded that the backscatter coefficient of steep  
slopes facing the sensor are appeared to be high and 
due to this the estimated AGB is also observed to the 
high. The phenomenon of foreshortening and layover 
is dominant in the hilly terrain. The total AGB in 
Kempti Forest Range is about 0.63 million tonnes. 
The carbon calculation from the biomass has been 
done bymultiplying the biomass by the factor of 0.46 
(IPCC). The amount of carbon stored in the forest is 
found to be about 0.29 million tonnes. The details of 
forest area under different forest types, modeled bio-
mass, modeled carbon and the sequestration potential 
are shown in Table 2.

The forest ecosystem captures and retain large 
volume of carbon over long periods, thus develop  a 
large biomass and carbon pool. The young trees are 
sequestering large amount of carbon, whereas an old 
mature trees acts as a reservoir holding large volume 
of carbon even it is not experiencing net growth. Thus, 
a young forest holds less carbon, but it is sequestering 
additional carbon over time. The carbon present in 

the biomass is converted to CO2, the lonnes of carbon 
are multiplied by the ratio of the molecular weight 
of  carbon (44/12).

The open forest in Kempti Forest Range holds 
22655.7 1 tonnes of carbon which has potential to 
sequester 81560.54 tonnes of Carbon dioxide equiva-
lent from the atmosphere. The MDF in Kempti Forest 
Range holds 75870. 65 tonnes of carbon which has 
potential to sequester 273166.72 tonnes of Carbon 
dioxide equivalent from the atmosphere. The VDF 
has the potential to sequester 717935.27 tonnes of 
Carbon dioxide equivalent from the atmosphere. A 
total of 1076244.55 tonnes of Carbon dioxide equiv-
alent is stored from the atmosphere in the Kempti 
Forest Range.

CONCLUSION

Thisstudy demonstrates that L-band ALOS PALSAR 
data can be utilized delineate the spatial distribution 
of the AGB for the whole extent of the Kempti Forest 
Range. Empirical functions. were derived from the re-
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lationship between the AGB measured on the ground 
sample plots and several image variable derived from 
L-band ALOS PALSAR polarizations. Among the 
different variables, backscatter from HV polarization 
was found to be the best predictor with the highest R2 

when regressed independently. Overall, the simulated 
AGB in the forest was estimated to range from 1.02 
t/ha to 252.31 t/ha , with anaverage of 95.73 t/ha. 
The estimates were then used to produce a spatially 
distributed thematic map showing the spatial pattern 
of AGB for the whole study area. The heterogeneity 
of the foret structure, a consequence of good manage-
ment and efficient silviculture practices, has resulted 
in a forest that has different vegetation density, that 
can be captured by L-band SAR system. Results also 
indicated that despite the limitations, which resulted 
indata saturation about 150 t/ha levels, the use of 
L-band SAR can provide an alternative that allows 
rapid assessment of AGB in large areas where access 
is limited. The errods associated with the prediction 
model were also observed to increase largely as the 
AGB exceeded 150 t/ha. The uncertainty caused in 
the estimation of overall biomass can be reduced by 
the application of SAR simulation. The invalid pixels 
due to noice i.e. layover, foreshortening and shadow 
can be handled by using multi temporal data sets, 
The data sets with different incident angles plays an 
important role in the accurate estimation of biomass. 
The approach described can be used as a practical 
technique for areas infused with noise.
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