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ABSTRACT

Poisson regression models are the most reasonable 
regression models while the observation is a count 
data. In many cases where ecological data are ana-
lyzed, the normality assumption is often violated and 
as such fitting the normal linear models to ecological 
data is not at all the usual way. There are variety of 
other methods which are conflicting in themselves 
and so choosing an appropriate one is another point of 
discussion. In this paper, the abundance of earthworm 
species is investigated through various soil and envi-
ronmental characteristics in three subtropical forest 
ecosystems of Manipur, India. Counts of different 
earthworm species are being observed in three sub-
tropical forest ecosystems of Manipur; viz., Mixed 
Reserved forest, Disturbed forest and Plantation 
forest during the 12 months of the year. The count of 
species of a particular type of earthworm observed 

during the 12 months of the year is regressed on 9 soil 
characteristics. Three random effects Quasi-Poisson 
models consisting of continuous predictor variables 
are fitted separately for the three different sites. The 
main effects models and interaction effects model are 
separately interpreted for all the three sites. Adequa-
cy of fitted models are checked by using diagnostic 
plots. Soil temperature and soil moisture are two 
dominant characteristics which significantly influ-
ence the abundance of earthworm in all three sites. 
Carbon, nitrogen and phosphorus are also significant 
predictors of earthworm abundance. Some interac-
tion effects also contribute to species abundance. 

Keywords: Quasi-Poisson model, Main effects, 
Interaction effects, Forest ecosystems.

INTRODUCTION

Analysis of ecological data is generally complex 
because of the complexity of data present in the data 
itself. One of the greatest challenges in modelling eco-
logical data by way of learning statistics is to figure 
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out how the various methods relate to each other and 
determining which method is most appropriate for any 
particular problem. However, no single method can 
accommodate the myriad problems we encounter with 
ecological data. Thus, we have to look for various 
methods available and derive a meaningful model 
to choose while seeking for an appropriate analysis.

Any statistical model typically consists of two 
parts, a deterministic component and a stochastic 
component, the later usually designated as error 
component. Most of the differences among methods 
are due to differences in the assumptions about either 
the response variable, the deterministic component, 
or the error component and most are extensions 
or modification to the basic general linear model 
that expresses the response Y as linear function of 
predictor X, where all observed values are assumed 
to be independent and normally distributed with a 
constant variance. In the present study, we consider 
count of species of earthworm as response Y variable 
and a set of soil characteristics as vector of predictor 
variables X and then develop a multivariable model 
which takes care of all possible modelling steps.

Soil animals are of immediate concern in activ-
ities related to agriculture, forestry and environment 
monitoring (Sileshi 2008). However, the complexity 
and diversity of soil animals and habitats in which 
they live pose challenges to those who seeks to 
quantify the effects of land use and management 
practices on the abundance soil animals (Lavelle 
et al. 2003). Earthworms are widely distributed in 
most ecosystems in natural and plantation forest, 
grasslands and agro-ecosystem. Earthworms repre-
sent a major portion (>80%) of the soil invertebrate 
biomass and involve in the process of soil formation 
and maintenance of soil fertility. Distribution and 
abundance of earthworms are governed by several 
ecological factors viz., soil temperature, soil moisture, 
soil pH value, available organic matters. The number 
of species in a given earthworm community, which 
is the simplest measure of species diversity range 
from 1 to 15 species (Edwards and Bohlen 1996).
The diversity of the earthworm community at a giv-
en locality is influenced by the characteristics of the 
soil, climate and organic resources of the locality as 
well as its history of land use and soil disturbance. 

Earthworms perform several beneficial functions 
which include decomposition of organic matter that 
helps in increasing soil nutrients, increase air water 
infiltration, soil aggregation, increase the availabil-
ity of plant nutrients, worm cast as bio-fertilizer.

Source of data

In this paper, data on count of species of 12 earthworm 
species collected from three subtropical forests eco-
systems of Manipur, India are used. The three forest 
ecosystem are (1) Mix reserve sub-tropical forest 
ecosystem located at Koirengei (24o 52'51.36’’North 
latitude and 93o54'  49.75 East longitude and altitude 
800 – 917 m above MSL); (2) Oak dominated Langol 
Hills (24o52 '51.6 N and 93o55'26.59 E and altitude of 
797- 848 m above MSL (3) Managed oak plantation 
Forest (valley area) at Mantripukhri (24o52' 52.9'' N, 
93o056' 016'' E and altitude of 786 m above MSL). 
Data  were collected in the 12 months of the year. We 
designated the three forest ecosystems as Site 1, Site 2 
and Site 3 respectively.  All three sites have different 
types of biotic interference. Site 1 is located 11 km 
from Imphal city having an area of 25 hectares and 
the collection site is protected from various biotic 
interference and Site 2 is located at Langol Hills 8 km. 
from Imphal city where frequent biotic interference 
takes place. Site 3 is managed oak plantation forest 
ecosystem at the valley area of Mantripukhri 4 km 
North of Imphal city. Number of different earthworm 
species are collected from six different locations 
(replicates) at each of the study sites during January 
to December. A maximum of 12 different species are 
found in Site 1 whereas only 6 and 4 different spe-
cies are found in Site 2 and Site 3 respectively. Each 
replicate has a depth of 10 cm inside the soil from 
the surface. Some of the locations shows 0 counts of 
a particular species in a particular month.  Data on 
the number of counts of species are thus obtained 
for the 12 months of the year during 2012 and 2013 
(Haokip 2015). Altogether, there are 216 (12×6×3) 
sampling points. Measurements on 9 soil and en-
vironmental characteristics are recorded for each 
sampling point at the time of species collection. The 
nine soil characteristics are Soil Temperature (Temp), 
Soil Moisture (Moist), Soil bulk density (bdensity), 
Soil porosity (porosity), Soil pH (pH), Soil carbon, 
Soil nitrogen, Phosphorus (p) and Potassium (k).
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MATERIALS AND METHODS

The primary objective of this study to investigate 
the abundance of earthworm species, its variability 
in these three different forest ecosystems of Mani-
pur. Regression models are attempted in order to 
fit the count of species on soil and environmental 
variables. Thus, the objective is to develop a suitable 
multivariate model for count of earthworm species 
on various soil characteristics in a parsimonious 
environment. Different sites have different levels 
of soil characteristics which affect the earthworm 
abundance, thereby three different models in three 
different sites are attempted. This will include various 
steps demonstrated in the model building strategies.  

Modelling strategies

Regression modelling of the relationship between 
an outcome variable and independent predictor vari-
ables is commonly employed in virtually all fields 
of research. The popularity of this approach is due 
to the fact that biologically plausible models may be 
easily fitted, evaluated and interpreted. Every model 
building strategy would include a through understand-
ing of the data structure to choose a suitable model 
from a variety of models available in the literature. 
Statistically, the specification of a model requires 
choosing both systematic and error components. 
The choice of the systematic component involves an 
assessment of the relationship between an average 
of the outcome variable and the independent vari-
ables. The choice of an error component involves 
specifying the distribution of what remains to be 
explained after the model is fitted (the residuals).

A good place to start is to use a model with lin-
ear systematic component and normally distributed 
errors, the normal linear regression model. However, 
when the outcome variable is a count variable the 
assumption of normal error is often misinterpreted 
because the count dataset shows a skewed distri-
bution. Thus, the use of normal linear regression 
for the count of species is not a suitable model.

The Poisson regression

An alternative and more appropriate model when 

the response variable is count data would be the 
Poisson regression which is a generalization of the 
general linear model. Poisson regression is similar 
to regular multiple regression except that the depen-
dent (Y) variable is an observed count that follows 
the Poisson distribution. Thus, the possible values 
of Y are the non-negative integers: 0, 1, 2, 3 and so 
on. It is assumed that large counts are rare. Hence, 
Poisson regression is similar to logistic regression, 
which also has a discrete response variable. How-
ever, the response is not limited to specific values 
as it is in logistic regression. The approach for 
developing the final model will be the same except 
for the error component which will be assumed 
to be distributed as Poisson with some non-neg-
ative parameter (McCullagh  and Nelder 1989).

The Poisson distribution models the probability 
of y incidences with the formula :

                e-µµy

      Pr (Y=y/µ) = ——— (y = 0, 1, 2, 3…)	                 (1)
	            y'

The Poisson distribution is specified with a 
single parameter μ. This is the mean incidence rate 
of a rare incidence per unit of exposure. Because 
exposure is often a period of time, we use the sym-
bol t to represent the exposure. The parameter μ 
may be interpreted as the risk of a new occurrence 
of the event during a specified exposure period, t. 
The probability of y incidences is then given by

                                e-µ (µt) y

         Pr(Y=y/µ,t)= –––––––    (y = 0, 1, 2, 3…)            (2)
                                  y!

In Poisson regression, we suppose that the 
Poisson incidence rate µ is determined by a set of k 
regressor variables (the X’s). The expression relating 
these quantities is :

             µ = t exp(β0+β1 x1+β2 x2++βk xk                          (3)

      The regression coefficients β0, β1, β2…, βk are 
unknown parameters that are estimated from a set of 
data. Using this notation, the fundamental Poisson 
regression model for an observation i is written as :
                                   e-µ

i
t
i  (µt) 

yi     
          P (Yi=yi/μi ti) =    ——————                       (4)
                                            yi

!                                            
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Where μi=tiexp (β0+β1 x1i+β2 x2i+ ... +βk xki), xji 
denotes the jth variate of the ith observation.

That is, for a given set of values of the regressor 
variables, the outcome follows the Poisson distri-
bution.

The regression coefficients are estimated using 
the method of maximum likelihood.

The multivariable model

We start with a bivariate analysis in the sense that the 
response variate i.e. the count of species is fitted in 
a Poisson regression with all the predictor variables 
(9 soil characteristics) separately i.e. one predictor 
variable at one time.
 
Where Y = Count of species, Xi = ith predictor vari-
able, i = 1,… , 9

The observed data on count of species is first 
checked to ascertain whether normality assumption 
can be valid. Using the Shapiro-wilks test for normal-
ity all three data sets corresponding to the three sites 
show significant p-values which indicates violation of 
normal distribution. Graphical verification reassures 
that the assumption of normality is far beyond hope. 
The histogram is skewed to the right which is typical 
of count data. Possible transformations on the count of 
species such as logarithmic or square root do not show 
any improvement to validate normality assumption.
Thus, we have to take recourse to Poisson regression 
model in order to suitably fit the count data on the 
soil and environment variables. However, another 
difficulty arises in the present data while fitting a 
Poisson model. In the general Poisson distribution, 
the assumption is that mean and variance are equal, if 
not and if variance is larger than the mean, the fitting 
is not appropriate due to problem of overdispersion. 
Overdispersion is a problem which arises when the 
conditional variance(residual variance) is larger than 
the conditional mean (Faraway 2006). The present 
data requires to address the problem of overdisper-
sion. Two alternative solutions are available in the 
literature: (a) Fit it by using the method of quasi 
likelihood, call it Quasi-Poisson, (b) Change the 
model to negative binomial distribution. We choose 

the first one and fit the model using Quasi-Poisson.
The influence of a particular site on earthworm 

abundance is of particular interest in this study, so 
that effect of site is considered fixed.  All other soil 
characteristics which are thought to be potential 
regressors of earthworm abundance are continuous 
random effects. Three separate models one for each 
site are attempted separately for each site in order 
to identify those soil characteristics which could 
significantly influence the abundance of earthworm 
species of type 1(DrawidaJapanica). All other species 
types are not considered in this study. In each mod-
el, analysis is based on 72 sample points which are 
collected from 6 different locations/replication in 12 
months of the year.

First, we begin with a bivariate analysis i.e. 
species count is regressed on each of the soil vari-
ables taken one at a time. Those variables which are 
significant at 5-10% level is considered as a potential 
candidate in the multivariable model. We use R soft-
ware package to fit the above model. The result of 
bivariate analysis shows that all of the soil variables 
are significant at 5% level, thereby indicating that all 
are potential candidatesto include while developing 
the multivariable model in all the three sites. The 
result of fitting bivariate analysis is shown in Table 
1 for Site 1. The same analysis is also carried out for 
Site 2 and Site 3, but for the sake of space the results 
are not presented.

Next to the bivariate analysis is to attempt a full 
main effects model which seeks to retain all influ-
ential variable as significant predictors. We employ 

Table 1 (A). Bivariate Analysis -Site 1. *All variables are sig-
nificant at 5%.

Variables (Xi)	 Estimate of Coeff	 SE	 p-value

Temp		  0.103		  0.01	 <0.001
Moisture		  0.054		  0.01	 <0.001
Bulk density	 -5.79		  2.59	 0.03
Porosity		  0.15		  0.07	 0.03
pH		  -1.36		  0.01	 <0.001
Carbon		  0.918		  0.11	 <0.001
Nitrogen		  10.10		  0.86	 <0.001
P		  102.88		  10.8	 <0.001
K		  -19.74		  8.70	 0.03
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a forward addition technique to expand the model 
starting from a simple one which includes only one 
variable. In this, we fit a Quasi-Poisson model con-
taining only the variable “Temp” call it fit1. Next, 
we add one more variable “Moist” to fit1 and call 
it fit2.  The two models are then compared to see 
whether there is any improvement in the 2nd fit over 
the 1st fit. A significant F-value in the “anova(fit1,fit2, 
test=’F’)” (R command) indicates that the later fit is 
well improved over the earlier fit. Thus, in fit2 with 
two variables shows significant improvement over 
fit1. We retain both the variables. However, in fit3 
where one more variable “bdensity” is added to fit2, 
we cannot see any improvement, thereby supporting 
to remove “bdensity” and retain the earlier fit2. The 
process of adding a new variable in the existing fit 
and then checking if there is any improvement in the 
new fit over the former fit continues till all variables 
are exhausted. Finally, in Site 1, the main effects 
model consists of five factors viz., Temp, Moist, pH, 
carbon and nitrogen.  Thus, the adjusted main effects 
model in Site 1 is 

μ1= t.ⅇ (β0+β1 Temp+β2 Moist+β3 pH+β4 carbon+β5 nitrogen) (5)

The same technique is applied to Site 2 and Site 
3 where we get two different main effects model as 
shown in equations (6) and (7) :

μ2= t.ⅇ (β0+β1 Temp+β2 Moist+β3 nitrogen)    (6)

μ3= t.ⅇ (β0+β1 Temp+β2 Moist+β3 porosity+β4 pH+β5 
carbon+β6P)	 (7)

Where, µ1, µ2 and µ3 are the respective means 
in the three sites, β’s are the regression coefficients.

The results of fitting the three models are pre-
sented in Tables 2(A), 2(B) and 2(C). It consists of 
the estimated coefficients, std. error and t- values with 

associated p-values. For Site 1 three variables viz., 
Temp, carbon and nitrogen are significant at 5% level. 
The variable pH is nearly significant (at 6% level) and 
so we retain it. Even though the variable Moist is not 
significant we keep it because of its importance in the 
interaction effects. In Site 2, all three variables Temp, 
Moist and nitrogen are significant and in Site 3, Temp, 
carbon and P are significant. Also, the variable Moist 
is nearly significant (at 9% level) and so we retain it.

Before further expanding the model by includ-
ing interaction effects we perform the diagnostics of 
the fitted models which checks for adequacy of the 
models. At this stage, we can well assume that the 
variables in the three respective models are good pre-
dictors of the count of species in the respective sites 
(Diagnostic plots are not shown for saving space).

The next step is to see whether there is any in-
teraction effect of each of the predictors in the main 
effects models which could significantly influence 
the earthworm counts so that we can arrive at a 
final multivariate interaction model. Here, we will 
consider only two factor interaction. Only those 
variables which are significant at 5% are considered 
for inclusion in the interaction. The reason is that an 
interaction term cannot be significant if the any of its 
factors is not significant.

Final Interaction models

The method of forward addition is again employed 

Table 2(A).  Site1-Main effects models.

Variable		  Coeff	 SE	 T	 p-value

(Intercept)		 2.243	 1.253	 1.790	 0.078
Temp		  0.034	 0.013	 2.650	 0.010*
Moist		  0.009	 0.006	 1.505	 0.137
pH		  -0.337	 0.171	 -1.96	 0.054
Carbon		  0.327	  0.103	 3.161	 0.002**
Nitrogen		  3.249	 1.306	 2.48	 0.015 *

Table 2(B). Site 2-Main effects model.

Estimate	    Estimate	    SE	   T	 p-value

(Intercept)	  -0.91	   0.320	 -2.861	 0.005 **
Temp	   0.043	   0.011	 3.881	 <0.001 ***
Moist	   0.017	   0.008	 2.015	 0.047 *
Nitrogen      8.490	   1.463	 5.801	 <0.001 ***

Table 2(C). Site3-Main effects models.

Variables	 Coeff	 SE	 T	 p-value

Intercept	 -6.20	 0.91	 -6.83	 <0.001**
Temp	 0.04	 0.014	 2.93	 0.004 **
Moist	 0.018	 0.01	 1.16	 0.085
Carbon	 1.63	 0.38	 4.20	 <0.001**
p	 57.09	 20.43	 2.79	 0.006**
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here in order to arrive at a final interaction model. In 
Site1, only one interaction is considered important 
i.e. carbon : nitrogen. Other interactions do not show 
any significant improvement in the final model, so 
we remove them (Table 3(A)). In Site 2, also one 
interaction is included i.e. Temp:Moist (Table 3(B)) 
and in Site 3, none of the interactions are significant. 
In other words, by adding any of the possible inter-
actions the fit does not improve the model. Hence, 
we retain only the main effects model, (Table 3(C)).

Adequacy of fitted models

While interpreting a fitted model it is first checked 
for model adequacy in order to verify whether the 
data fits well into the proposed model. The steps for 
checking model adequacy is similar to the one already 
discussed in the main effects models. A graphical 
display of diagnostic plot is shown in Figure1 for Site 

Table 3 (A). Final Interaction Model for Site-1.

Variable	 Coeff	 SE	 T	 p-value

(Intercept)	-2.7314	 2.408	 -1.134	 0.261
Temp	 0.0267	 0.012	 2.059	 0.043 *
Moist	 0.0122	 0.006	 1.876	  0.065
pH	 -0.2486	 0.170	 -1.456	 0.150
Carbon	 1.8654	 0.647	 2.879	 0.005**
Nitrogen	 18.329	 6.411	 2.859	 0.005**
Carbon:
Nitrogen	 -4.964	 2.071	 -2.397	 0.019 *

(Dispersion parameter for Quasi- Poisson family taken to be 
2.136168).
Null deviance: 739.74  on 71  degrees of freedom,
Residual deviance: 141.85  on 65  degrees of freedom,
AIC: NA.

Table 3 (B). Final Interaction Model for Site-2.

Variable	 Coeff	 SE	 t	 p-value

(Intercept)	-2.745	 0.7116	 -3.859	 <0.001***
Temp	 0.1258	 0.0304	 4.131	 <0.001 ***
Moist	 0.0699	 0.0203	 3.440	 0.0010 **
Nitrogen	 8.9223	 1.3874	 6.431	 <0.001 ***
Temp :
Moist	 -0.002	 0.0008	 -2.861	 0.005 **
(Dispersion parameter for Quasi- Poisson family taken to be 
1.366089).
Null deviance: 405.139  on 71  degrees of freedom,
Residual deviance:  88.914  on 67  degrees of freedom,
AIC: NA.

Table 3 (C). Final main effects models for Site-3.

Variables	 Coeff	 SE	 T	 p-value

Intercept	 -6.20	 0.91	 -6.83	 <0.001**
Temp	 0.04	 0.014	 2.93	 0.004 **
Moist	 0.018	 0.01	 1.16	 0.085*
Carbon	 1.63	 0.38	 4.20	 <0.001**
P	 57.09	 20.43	 2.79	 0.006**
(Dispersion parameter for Quasi- Poisson family taken to be 
2.912755).
Null deviance: 610.08  on 71  degrees of freedom,
AIC : NA.

1, where we can, at this stage assume that there is no 
evidence of lack of an adequate fit. The residuals vs 
fitted plot shows the fit is good as there is no obvious 
pattern on the line and the residuals are more or less 
equally spread around the horizontal line. The normal 
Q-Q plot supports that the residuals are normally dis-
tributed. Further there are no influential observations 
in the fit (Cook’s distance). The diagnostic plots for 
Site 2 (eqn. (9)) and Site 3 (eqn. (10)) also support 
reasonably good fits which for the sake of space, are 
not shown. 

RESULTS AND DISCUSSION

Model summary

Site 1: Mix reserve sub-tropical forest ecosystem 
located at Koirengei protected from frequent biotic 
interference.

E(y)=μ1=ⅇ (-2.73+0.0267Temp+0.012Moist-0.248pH+1.86carbon+18.33 nitrogen-4.96carbon

                                    *nitrogen)	                                                        (8)
Site 2: Disturbed forest atLangol Hills- disturbed 
forest ecosystem where frequent biotic interference 
takes place.

E(y)= µ2=ⅇ (-2.745+0.125Temp+0.069Moist+8.922nitrogen-0.002Temp*Moist)           (9)

Site 3: Managed Oak  Plantation Forest ecosystem 
at Mantripukhri.

  E(y)=μ3 =ⅇ (-6.2+0.04Temp+0.02Moist+1.63carbon+57.1P)		  (10)

The results of fitting the final interaction models in 
equations (8), (9) and (10) are presented in Tables 
3(A) through Table 3(C). In Site 3 no interaction 
term is significant. The tables consist of the estimated 
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coefficients (β’s), the standard error (s.e.), t values 
and associated p-values. In Table 3 (A), the variables 
Temp, carbon and nitrogen are significant at 5% lev-
el along with the interaction carbon : nitrogen, but 
Moist, and pH are not significant. Moist and pH are 
still retained in the model due to their importance as 
a predictor. In Table 3(B), all variables, Temp, Moist 
and nitrogen are significant along with the interaction 
Temp:Moist. In Table 3  (C), all variables Temp, Moist 
carbon and P are significant. 

All predictor variables in these models are all 
continuous variables. The estimated coefficient for a 
predictor represents the change in the link function 
for each unit change in the predictor variable while 
the other predictors in the model are held constant. 
Generally, positive coefficient makes the response 
more likely (to increase) while negative coefficients 
make it less likely. An estimated coefficient near 0 
indicates that the effect of the predictor is small. In 
the models in equations (9), (10) and (11), the link 
function is the natural logarithm there by the relation-
ship between the response variable and the predictors 
can be done by exponentiation. As for example in 
Site 1 the coefficient for Temp is 0.026 which shows 
that a one unit change in the soil temperature results 
in the mean number of earthworms increased by 

exp  (0.026) = 1.03 times. However, the coefficients, 
for soil pH is -0.24, which indicates that a one unit 
increase in soil pH value will result in the decrease 
of exp (-0.24)= 0.79 times in the mean no. of earth-
worms. The interaction terms cannot be interpreted 
in this way as the relationship of one predictor to the 
response variable depends on the other term of the 
interaction. We can do similar interpretation of the 
coefficients in the other two sites.

The effect of soil temperature plays an important 
role in the earthworm species count of type 1 in all 
the three sites. However, in disturbed forest ecosys-
tem soil temperature affects the species count more 
dominantly than the other two forest ecosystems. 
Soil moisture is not significant in Site 1 and Site 3 
but it is significant in Site 2. Soil carbon content and 
nitrogen are highly significant in Site 1. The positive 
coefficients indicate that these variables contribute to 
the increase in species counts as their values increase. 
The interaction effect of carbon and nitrogen is also 
significant in Site 1. Soil pH value does not show 
significant contribution to the species count in Site 
1. Soil nitrogen has significant contribution in Site 2 
whereas soil carbon has significant contribution to 
species count in Site 3. In Site 2 the interaction effect 

Fig. 1. Diagnostic plots in Site- 1 (Final Interaction Model).
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of Temperature and moisture is significant whereas 
none of the interactions is significant in Site 3. In 
Site 3 P (phosphorus) also contributes significantly

While ecologists are often concerned with the 
study of species abundance and diversity, the vari-
ations in abundance and diversity of species across 
different habitats is measured by the species count 
data. However, one of the crucial challenges which 
ecologists often encounter in dealing with species 
count data is its inherent complexity arising out of 
sampling procedure which is further complicated by 
the presence of excess number of zeroes in the data 
set.  When the frequency of zeroes is very large and 
do not readily fit into any of standard distributions 
mainly because of skewness and over-dispersion, the 
data set is referred to as zero inflated. The present 
data set exhibits over dispersion  due large number 
of zero counts which poses crucial issues while 
fitting the ordinary Poisson model. A solution to the 
problem is to take care of the excess variance. Thus, 
a Quasi-Poisson model is being fitted here. Accord-
ing to the different soil habitat characteristics in the 
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three different forest ecosystems which we have 
mentioned above three different multivariate models 
are obtained. While alternative methods to tackle the 
excess zero problem are available in the literature 
improved models will be attempted in our next paper.


