Environment and Ecology 39 (1) : 32—37, January—March 2021 ISSN 0970-0420

Floral Species Diversity of Colonel Sher Jung National Park, Himachal Pradesh

S. Balaji Naik, Dr. Vimal Chauhan, Sourav Ranjan Mohapatra, Kapoor

Received 8 June 2020, Accepted 5 December 2020, Published on 7 January 2021

ABSTRACT

An intensive floristic investigation provides the first systematic and comprehensive account of the floral diversity of Col. Sher Jung National Park of Himachal Pradesh. Knowledge of floristic diversity is essential for understanding ecosystem and its functioning. Total 184 species were found which includes 63 species of trees, 42 species of shrubs,42 species of herbs, 22 species of grasses, 5 species of sedges, 3 species of ferns, 6 species of climbers and 1 species of creeper in the park. Fabaceae is the dominant family represented by 31 species, followed

S. Balaji Naik*, Dr. Vimal Chauhan, Kapoor Department of Silviculture and Agroforestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan173230, Himachal Pradesh, India

Sourav Ranjan Mohapatra Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun 248006, Uttarakhand, India Email:balajinaik.naik99@gmail.com * Corresponding author by Poaceae (22 species), Malvaceae (14 species), Asteraceae (14 species) and Lamiaceae (7 species).

Keywords: Flora, Trees, Shrubs, Herbs, Col. Sher Jung National Park.

INTRODUCTION

India is one of the 12 mega biodiversity countries of the world and consists of 17,000 flowering plant species. It accounts for 8% of the global biodiversity with only 2.4% of the total land area in the world (Hajra and Mudgal 1997, Reddy 2008). Tropical forests are often referred to as one of themost species diverse terrestrial ecosystems (Kumar *et al.* 2006).

Plants form the major structural and functional basis of tropical forest ecosystems and can serve as robust indicators of changes and stresses at the landscape scale. Many tropical forests are under great anthropogenic pressure and require management intervention to maintain the overall biodiversity, productivity and sustainability. These forests are rich inmedicinal and economically important plants. Over-exploitation has resulted in a rapid loss of tropical forests which isconsidered as one of the most serious environmental and economic problems all over the world (Hare *et al.* 1997).

There is a growing interest in quantifying habitat characteristics like forest structure, floristic composition and species richness in Indian forests (Kumar *et al.* 2006, Yadav and Yadav 2005). A study on tree species diversity of tropical forests is ecologically significant besides its usefulness in forest management.

To understand and assess richness of the floral diversity, a taxanomic study of the flora and forests is very much essential. Floristic surveys are the only means by which we can achieve this goal. The floristic studies are considered as the backbone of the assessment of phytodiversity, conservation management and sustainable utilization (Jayanthi and Rajendran 2013).

The flora are helpful in providing clues of changing floristic patterns, new invasions, current status, rare, endemic and threatened taxa in a phytogeographical area. They also form a vital component of any resource management and planning activities at the local regional and global levels.

The landscape of Col. Sher Jung National Park is characterized by hills, valleys, gullies and numerous water streams and covered mainly by secondary degraded forests and plantations. Floristically Col. Sher Jung National Parkis rich and diverse. Hence, it is very important to take proper steps to conserve this natural forest and to explore, document and analyze the species diversity occurring the Col. Sher Jung National Park before disappearing from nature.

Understanding species diversity and distribution patterns is important for helping managers to evaluate the complexity and resources of these forests. This study investigates species diversity of Col. Sher Jung National Park of Sirmour district of Himachal Pradesh.

MATERIALS AND METHODS

Study site

The present study was carried out in the Col. Sher Jung National Park (Fig. 1) which encompasses an area of 27.88 sq km in the Sirmour district of Himachal Pradesh. It is exactly located between latitudes 300 28'13"N to 30°23'31" N and longitude 77°28'43"E to 77°27'40"E. It lies in Paonta valley of Himachal Pradesh which shares boundary with Kalesar National Park and Rajaji National Park.

Fig. 1. Detail map of Col. Sher Jung National Park, Simbalbara, Sirmour, HP, India (Inset : Location map of Sirmour in HP).

National Park shows a wide geoenvironmental variation. In location; annual minimum and maximum temperature ranges from 3°C - 40°C, mean annual rainfall about 1200 mm and relative humidity varies from 26 % in summer to 90 % during monsoon. Studied area is having anelevatoinal range of 350 amsl to 700 amsl. Which is composed of unconsolidated siltstone, sandstone and conglomerate.

Sampling protocol

The survey of the flora has been made through repeated field visits during rainy season (2018-2019) when majority of the plants were at the peak of their growth and intensive observation for the collection of samples. 3 quadrats of $31.62 \text{ m} \times 31.62 \text{ m} (0.1 \text{ ha})$ size were randomly laid to study tree species. The tree species includes all the saplings, poles and trees present in the study area (Nirmal Kumar et al. 2002). The shrub and herbaceous species were studied by laying 3 quadrats randomly. In each quadrat, a sub-quadrat of $5 \text{ m} \times 5 \text{ m} (25 \text{ sq m})$ size for shrubs and a sub-quadrat of $1m 983 \times 1m (1sq m)$ for herbaceous vegetation were selected.

Table 1. Plant diversity of study area.

Sl. No.	Family	Scientific name	Plant
1	Fabaceae	Acacia catechu	Tree
2	Fabaceae	Acacia nilotica	Tree
3	Fabaceae	Albizzia procera	Tree
4	Fabaceae	Albizzia lebbeck	Tree
5	Fabaceae	Bauhinia malabarica	Tree
6	Fabaceae	Bauhinia variegate	Tree
7	Fabaceae	Butea monosperma	Tree
8	Fabaceae	Cassia fistula	Tree
9	Fabaceae	Dalbergia sisoo	Tree
10	Fabaceae	Leucenealeucophala	Tree
11	Fabaceae	Melilotus indicus	Tree
12	Fabaceae	Pongamia pinnata	Tree
13	Fabaceae	Prosopis juliflora	Tree
14	Fabaceae	Ougeinia oojeinensis	Tree
15	Fabaceae	Tamarindus indica	Tree
16	Fabaceae	Cassia occidentalis	Shrub
17	Fabaceae	Dendrolobium triangulare	Shrub
18	Fabaceae	Desmodiumga ngeticum	Shrub
19	Fabaceae	Desmodium pulchellum	Shrub
20	Fabaceae	Flemingiabracteata	Shrub
21	Fabaceae	Flemingia chappar	Shrub
22	Fabaceae	Indigofera gerardiana	Shrub
23	Fabaceae	Phyllodium pulchellum	Shrub
24	Fabaceae	Desmodium heterocarpan	Herb
25	Fabaceae	Desmodium triliflorum	Herb
26	Fabaceae	Mimosa pudica	Herb

~		~	~ 1
Sl. No.	Family	Scientific name	Plant
27	Fabaceae	Trifolium	
		alexandrinum	Herb
28	Fabaceae	Milletia auriculata	Climber
29	Fabaceae	Pueraria tuberose	Climber
30	Fabaceae	Millleti aextensa	Climber
31	Fabaceae	Bauhinia vahlii	Creeper
32	Moraceae	Ficus henghalensis	Tree
33	Moraceae	Ficus glomerata	Tree
34	Moraceae	Ficus hispida	Tree
35	Moraceae	Ficus lacor	Tree
36	Moraceae	Ficus racemosa	Tree
37	Moraceae	Ficus religiosa	Tree
38	Moraceae	Ficus roxburghii	Tree
39	Moraceae	Ficus semicordata	Tree
40	Moraceae	Artocarpus lacucha	Tree
41	Moraceae	Morus alba	Tree
42	Moraceae	Morus nigra	Tree
43	Combretaceae	Anogeissus latifolia	Tree
44	Combretaceae	Terminalia alata	Tree
45	Combretaceae	Terminalia ariuna	Tree
46	Combretaceae	Terminalia chehula	Tree
40	Combretaceae	Terminalia hellirica	Tree
48	Combretaceae	Terminalia tomentosa	Tree
49	Malvaceae	Romhax cieba	Tree
50	Malvaceae	Grewia ontiva	Tree
51	Malvaceae	Grewia opnositifolia	Tree
52	Malvaceae	Grewia elastic	Tree
53	Malvaceae	Kvdia calvcina	Tree
54	Malvaceae	Gossynium arboretum	Shrub
55	Malvaceae	Urena lahata	Shrub
56	Malvaceae	Corchorus aestuans	Herb
57	Malvaceae	Malvastrum coro-	
		mandelianum	Herb
58	Malvaceae	Sida acuta	Herb
59	Malvaceae	Sida cordata	Herb
60	Malvaceae	Sida cordifolia	Herb
61	Malvaceae	Sida rhomboidea	Herb
62	Malvaceae	Triumfetta	
		rhomboidea	Herb
63	Rubiaceae	Adina cardifolia	Tree
64	Rubiaceae	Haldina cordifolia	Tree
65	Rubiaceae	Mitragyna parvifolia	Tree
66	Rubiaceae	Coffea henghalensis	Shrub
67	Rubiaceae	Randia uliginosa	Shrub
68	Rubiaceae	Borreria articularis	Herb
69	Salicaceae	Casearia tomentosa	Tree
70	Salicaceae	Flacourtia indica	Tree
71	Salicaceae	Populus deltoids	Tree
72	Phyllanthaceae	Bridelia retusa	Tree
73	Phyllanthaceae	Phyllantu semblica	Tree
74	Boraginaceae	Cordia dichotoma	Tree
75	Boraginaceae	Ehretia laevis	Tree
76	Boraginaceae	Cynaglossum	
	0	lanceolatum	Herb
77	Myrtaceae	Eucalyptus	
	-	tereticornis	Tree
78	Myrtaceae	Syzygium cumini	Tree

Sl. No.	Family	Scientific name	Plant	Sl. No.	Family	Scientific name	Plant
79	Anacardiaceae	Lannea		122	Asteraceae	Spilanthes paniculata	Herb
		coromandelica	Tree	123	Asteraceae	Syndrella vialis	Herb
80	Anacardiaceae	Mangifera indica	Tree	124	Asteraceae	Tridax procumbens	Herb
81	Meliaceae	Melia azedarach	Tree	125	Asteraceae	Vernonia cinerea	Herb
82	Meliaceae	Toona ciliate	Tree	126	Asteraceae	Xanthium indicum	Herb
83	Lamiaceae	Gmelina arborea	Tree	127	Asparagaceae	Agave cantula	Shrub
84	Lamiaceae	Callicarpamacro		128	Asparagaceae	Asparagus adsecndes	Shrub
85	Lamiaceae	phylla Clerodendrum-	Shrub	129	Asparagaceae	Asparagus racemo- sus wild	Herb
		viscosum	Shrub	130	Solanaceae	Solanum hispidum	Shrub
86	Lamiaceae	Colebrookia opp-		131	Solanaceae	Solanum torvum	Shrub
		ostifolia	Shrub	132	Convolvulaceae	Ipomea atropurpurea	Shrub
87	Lamiaceae	Vitex negundo	Shrub	133	Convolvulaceae	Ipomea carnea	Shrub
88	Lamiaceae	Acrocephalus ca-		134	Rutaceae	Murraya koenigii	Shrub
		pitatus	Herb	135	Rutaceae	Toddalia asiatica	Shrub
89	Lamiaceae	Nepeta hindostana	Herb	136	Primulaceae	Ardisia solanacea	Shrub
90	Lauraceae	Litsea glutinosa	Tree	137	Urticaceae	Boehmeria frutescens	s Shrub
91	Euphorbiaceae	Mallotus philippensis	Tree	138	Verbenaceae	Lantana camara	Shrub
92	Euphorbiaceae	Baliospermum		139	Rosaceae	Rubus ellipticus	Shrub
		montanum	Shrub	140	Lythraceae	Woodfordia	
93	Euphorbiaceae	Euphorbia hirta	Herb			floribunda	Shrub
94	Euphorbiaceae	Euphorbia prostrate	Herb	141	Amaranthac	Achyranthes aspera	Herb
95	Annonaceae	Miliusa velutina	Tree	142	Amaranthaceae	Alternanthera sessilis	Herb
96	Arecaceae	Phoenix humilis	Tree	143	Phyllanthaceae	Phyllantus virgatus	Herb
97	Arecaceae	Calamus tenius	Shrub	144	Phyllanthaceae	Phyllanthus urinaria	Herb
98	Rhamnaceae	Ziziphus jujuba	Tree	145	Urticaceae	Boehmeria ma-	
99	Rhamnaceae	Ziziphus nummularia	Shrub			crophylla	Herb
100	Dipterocarpaceae	Shorea robusta	Tree	146	Commelinaceae	Commelina	
101	Sapotaceae	Madhuca longifolia	Tree			benghalensis	Herb
102	Simaroubaceae	Ailanthus excels	Tree	147	Hypoxidaceae	Curculigo orchioides	Herb
103	Ebenaceae	Diospyros mela-	T	148	Oxalidaceae	Oxalis corniculata	Herb
104	A	noxylon	I ree	149	Piperaceae	Peperomia pellucia	Herb
104	Apocynaceae	Calotropis procera	Shrub	150	Papaveraceae	Fumaria parvifiora	Herb
105	Apocynaceae	Carissa opaca	Shrub	151	Mazaceae	Mazus ragosus	Herb
106	Apocynaceae	Carissa spinarum	Shrub	152	Portulacaceae	Portulaca pilosa	Herb
107	Apocynaceae	Holarrnena anti-	C11.	155	Lorantnaceae	Helixaninera	Climber
100	A	aysentrica	Shrub	154	C	ligusrina Comunia contenio a	Climber
108	Apocynaceae	notarrnena	Charala	154	Dapparaceae	Capparis zeyianica	Crissi
100	A # 0.07 # 0.0000	pubescens Countelenia hu	Shrub	155	Poaceae	Coix lacryma	Grass
109	Apocynaceae	crypioiepis du-	Climbor	150	Poaceae	Cympogon curaies Cymhogon	Grass
110	Aconthecose	A dhato dayasiga	Shrub	137	roaceae	cymoogon-	Grass
111	Acanthaceae	Barleriastrigosa	Shrub	158	Poaceae	Cvnodon dactylon	Grass
112	Acanthaceae	Phlogacanthusth	Silluo	150	Poncene	Dendrocalamus	Ulass
112	Acanthaceae	1 mogucuninusin-	Shrub	157	Toaceae	hamiltonii Gross	
113	Asteraceae	Funatorium adano-	Silluo	160	Poaceae	Dendrocalamus-	
115	Asteraceae	phorum	Shrub	100	Toaceae	strictus	Grass
114	Asterocene	Yanthium	Silluo	161	Doncene	Digitaria cilaris	Grass
114	Asteraceae	Auninium	Shruh	162	Poaceae	Echinochloa colona	Grass
115	Asterocene	Agaratum	Silluo	162	Poncene	Eragrostis tramula	Grass
115	Asteraceae	Agerulum	Harb	164	Poaceae	Eragiostis tremuta Eragostis minor	Grass
116	Asteraceae	Ridnes hiternata	Herb	165	Poaceae	Ergrosus minor Fulalionsis hinata	Grass
117	Asteraceae	Blumoa laginiata	Horb	165	Poaceae	Eulanopsis olnaid Elausina indiaa	Grass
118	Asteraceae	Eclipta prostratrata	Herb	167	Poaceae	Hordeum yulgare	Grass
110	Asteraceae	Emilia sanchifolia	Herb	168	Poaceae	Onlismanus com	01488
120	Asteraceae	Sigashachia orientali	Herb	108	roaceae	opusmenus com-	Grass
120	Asteraceae	Sigesbeckia orientalis	Horb	160	Doocene	Opera sating	Grass
121	Asteraceae	sonenus wigniianus	nero	109	roaceae	Oryza sativa	Grass

Sl. No.	Family	Scientific name	Plant
170	Poaceae	Paspalidium flavidun	ı Grass
171	Poaceae	Phalaris minor	Grass
172	Poaceae	Saccharum offi-	
		cinarum	Grass
173	Poaceae	Saccharum sp-	
		ontaneum	Grass
174	Poaceae	Setaria italic	Grass
175	Poaceae	Triticum aestivum	Grass
176	Poaceae	Zea mays	Grass
177	Cyperaceae	Cyperus distans	Sedge
178	Cyperaceae	Cyprus kyllingia	Sedge
179	Cyperaceae	Cyperus nireus	Sedge
180	Cyperaceae	Cyperus rotundus	Sedge
181	Cyperaceae	Kyllinga nemoralis	Sedge
182	Pteridaceae	Adiatum incisum	Fern
183	Pteridaceae	Adiatum venustum	Fern
184	Pteridaceae	Chelilanthes farinose	Fern

 Table 2. Top ten dominating families with maximum number of species.

Sl. No.	Families	No. of species
1	Fabaceae	31
2	Poaceae	22
3	Malvaceae	14
4	Asteraceae	14
6	Lamiaceae	7
7	Combretaceae	6
8	Rubiaceae	6
9	Apocynaceae	6
10	Cyperaceae	5

followed by Malvaceae and Fabaceae. Among grasses Poaceae (species 22) were found during the study.

DISCUSSION

RESULTS

During the study of floristic diversity total 184 species were found which includes 63 species of trees, 42 species of shrubs, 42 species of herbs, 22 species of grasses, 5 species of sedges, 3 species of ferns, 6 species of climbers and 1 species of creeper (Table 1).

Total 49 families were recorded out of which the main dominating families were Poaceae, Fabaceae, Malvaceae, Moraceae, Asteraceae andsome of the recessive familieswere Annonaceae, Capparaceae, Commelinaceae, Hypoxidaceae, Lauraceae, Loranthaceae, Mazaceae, Piperaceae, Papaveraceae, Portulacaceae, Rosaceae, Oxalidaceae, Sapotaceae, Simaroubaceae, Primulaceae. Table 2 shows the dominating top ten families with highest number of species.

Percentage wise 34% were trees which was maximum (Fig. 2) and least was found for creeper (0%). From the above observation, it can be concluded that among trees Fabaceae is the dominant and leading family species wise (15), followed by Moraceae and Combretaceae. For shrubs Fabaceae is the dominant and leading family species wise (8), followed by Apocynaceae and Lamiaceae. For herbs Asteraceae is the dominant and leading family species wise (12), In the present study forests areas of Col. Sher Jung National Park were visited for exploration. Its represents relic and unique vegetation of tropical and sub-tropical deciduous forest. The dominant trees are *Shorea robusta, Syzygium cumini, Eucalyptus tereticornis, Terminalia tomentosa, Ehretia laevis, Diospyros melanoxylon*. Fabaceae is the most dominant family comprises of trees, shrubs, herbs, climbers and creepers. It is one of the most diverse communities in the angiosperms. The second most dominant family is Poaceae comprises of grasses.

Present studied area is a diverse area with great species diversity and it is the prime requirement of the government and local people to protect them. The floristic elements of this National Park are the depend-

Fig. 2. Percentage distribution of forest vegetation.

able source of food, medicine, water, timber and fuel wood of the local inhabitants. The floral biodiversity of the National Park exists under different degraded ecosystems and its protection management is still inadequate. Sustainable Management Plan of the Protected Area in the light of National Conservation Strategy is to be made and proper implementation through action plan is urgently required with collaboration and cooperation of stakeholders and local administrations. Although it is widely believed that tropical regions are experiencing losses of biodiversity at unprecedented rates, we lack information about the rate of habitat loss. So it is the prime requirement to have data of the present species diversity of tropical forests.

- Hare MA, Lantagne DO, Murphy PG, Chero H (1997) Structure and tree species composition in a sub-tropical dry forest in the Dominican Republic : Comparision with a dry forest in Puerto Rico. *Trop. Ecol* 38 : 1—17.
- Jayanthi P, Rajendran A (2013) Life- Forms of Madukkarai Hills of Southern Western Ghats, Tamil Nadu, India. *Life Sci. Leaflets* 9:57–61.
- Nirmal Kumar JI, Kumar RN, Joseph S (2002) Tree species diversity of Waghai forest of the Northern part of Western Ghats. *Int. J. Ecol. Environ. Conserv* 8:235–248.
- Kumar A, Gupta AK, Marcot BG, Saxena A, Singh SP, Marak TTC (2006) Management of forests in India for biological diversity and forest productivity, a new perspective. Volume IV : Garo Hills Conservation Area (GCA).Wildlife Institute of India.
- Reddy CS (2008) Catalogue of invasive alien flora of India. *Life Sci. J* 5 (2) : 84–89.
- Yadav AS, Yadav RK (2005) Plant community structure of Bala-fort forest in Alwar, Rajasthan. Int. J. Ecol. Environm. Sci 31: 109–117.

REFERENCES

Hajra PK, Mudgal V (1997) Plant diversity hotspots in India – An Overview, BSI India.