Environment and Ecology 42 (3A) : 1277—1282, July—September 2024 Article DOI: https://doi.org/10.60151/envec/JYQZ8224 ISSN 0970-0420

Wild Plants Used as Cure to Diseases by the People of Tribal Communities in the District of Birbhum, West Bengal, India

Subhra Bandopadhyay, Debnath Palit

Received 30 January 2024, Accepted 23 June 2024, Published on 5 August 2024

ABSTRACT

Sects of indigenous origin especially tribal population residing at the forest-fringes are the traditional users of the folk-medicines derived from the plants grown in proximity to where they live. Such age-old practices through generations have transformed knowledge into neural wisdom in them. This can open up a new dimension for the commercial synthesis of "Bio-medicines" supportive to eradicate the menace of drug resistance. The pharmaceutical industry can promote researches on bio-medical aspects of the ethno-medicinal plants (many being wild) and plant parts which are best addressed as Non-Timber Forest Products, to cure and prevent human diseases. Present study has dealt with these Non-Timber Forest Products to conceptualize and promote natural preventives and

Subhra Bandopadhyay¹, Dr Debnath Palit^{2*}

¹Department of Conservation Biology, Durgapur Government College, Durgapur, Paschim Bardhaman, West Bengal, India.

²Research Guide and Principal,

Durgapur Government College, Durgapur, Paschim Bardhaman 713214, West Bengal, India

Email : dgcprincipal2021@gmail.com *Corresponding author curatives as replacements for chemically synthesized medicines (drugs) having incidence of drug resistance and harmful side effects.

Keywords Non-Timber Forest Products (NTFPs), Drug resistance, Folk-medicine, Neural wisdom.

INTRODUCTION

One can visualize the existence of reality in myths when neural essence is assimilated from the literature and scripts of the Vedic Ages (1500-500 BCE). They provide the best information to establish that all plants are therapeutically potential for curing diseases - common or specific (Sarkar et al. 2016, Koner and Mondal 2022). The best of its usage is traditionally followed in the society of indigenous sects in our Nation (Yu et al. 2021). The unique medicinal property of the plants does support work on the value addition of Non-Timber Forest Products (NTFPs) for use in the pharmaceutical industry (Dinda et al. 2020). NTFPs are largely forest-derivatives that tribal people and other communities too are using for income generation and as tools for curing illnesses in their routined life (Chatterjee and Das 2017, Koner and Mondal 2022). Little work has been done so far on the therapeutic importance of locally available plants. In the present study, care is taken to open up a new scope of research work for using wild plants available locally for therapeutic uses. Bio-chemically exploring the plant can have resulted in the extraction of active

substances (phyto-chemicals) that the plant keeps within (Prasathkumar *et al.* 2021). These substances of bio-origin may be used in turn, for synthesizing bio-medicines as the benevolent blessings to mankind for elimination of possible menace of drug resistance. The present narrative deals with this tagline in mind and it is attempted to find out the extent of scope for medicinal uses of NTFPs. Objectives of the present study include:

To understand the reality in traditional belief for using wild plants as remedy to diseases.

To realize the impact of folk-medicines on the local commons of tribal populace.

To understand the therapeutic significance of plants and plant parts as viable forms of NTFPs.

To assess the viability of using ethno-medicinal plants for the preparation of bio-medicines as natural replacement to chemically synthesized medicines or drugs.

To provide valid inputs for future researches.

MATERIALS AND METHODS

Study area

District of Birbhum is lying between 23°32'30" and 24°35'0" north latitude and 88°1'40" and 87°5'25" east longitude. The district having 19 Administrative blocks, covers an area of 4545 sq km. It is bounded by the State of Jharkhand on north-west, on east by Murshidabad and Purba Bardhaman districts and on south by districts of Paschim Bardhaman and Purba Bardhaman of West Bengal. Ethnic races like Santal, Kora, and Oraon tribes are distributed as habitation patches (Choudhury *et al.* 2013).

Field survey

With the above background on record, the present study was done in 2021 and 2022 in 24 villages with tribal habitations in Rajnagar, Suri-1, Suri-II, Bolpur-Sriniketan, and Dubrajpur Block were selected to work with tribal people of these areas largely depend on the utilization of NTFPs as the prime source of their livelihood and sustenance. Being cash-poor, the general commons of the tribal populace are basically dependent on folk-medicines for treatment of the diseases they usually suffer from sustenance (Pradhan and Rahaman 2019).

Tribal habitations in the district of Birbhum were chosen as study-area because tribals are habitual-users of ethno-medicinal plants. The basic methodology of this study rests on qualitative and quantitative sources of data, collected from field surveys with pre-printed questionnaires with tribal populace considered as base population. A multi-stage random sampling method was done for the selection of households from each village. "Contact, connect and communication" was an effective mode employed for interactions. During field survey, hundred wild ethno-medicinal plants were collected and identifications as regards their taxonomic nomenclature were done (Prain 1903, Chase et al. 2016, Madani. et al. 2017, Paria 2022). The collected plant specimens are kept preserved in Botany Department of Durgapur Government College. Application and usage of the ethno-medicinal plants formed the computation of the principal database. Secondary data were collected from the district Magistrate and Divisional Forest Officer, Block Development Officers, Forest Beat Officers of Birbhum district. Both primary and secondary data form the base-line to interpret the outcome of the present study.

Extensive field visits led to understand the ethno-medicinal impacts on the lives of tribal people. Information on 100 wild ethno-medicinal plants growing wild almost within hand's reach are collected, identified following established procedure. Informative relevance of these plants is shown in Table 1.

RESULTS AND DISCUSSION

Analyzes of applications

Interactive conversations with Majhi-haram @ Gaon-Bura (Village-Heads) and other elderly people of the tribal-inhabited villages disclosed on the therapeutic properties of the ethno-medicinal plants they use in the form of folk-medicines for treatment of diseases or health hazards as may be called many a time varying from common to chronic illnesses (Koner and Mondal 2022, Sarkar *et al.* 2016). A revelation came out from

 Table 1. Hundred ethno-medicinal plants growing wild within hand's reach.

Sl.	T1	Determine 1	F	
No.	Local name	Botanical name	Family	
1	Kunch	Abrus precatorius L.	Fabaceae	
2	Bon-Kapas	Abutilon indicum (L.) Sweet	Malvaceae	
3	Akashmani	Acacia auriculiformis A.Cun ex Benth.	n.Mimosaceae	
4	Babla	Acacia arabica Willd.	Mimosaceae	
5	Apang	Achyranthes aspera L.	Amaranthaceae	
6	Basak	Adhatoda vasica Nees	Acanthaceae	
7	Bel	Aegle marmelos (L.) Correa	Rutaceae	
8	Sirish	Albizia lebbeck (L.) Benth.	Mimosaceae	
9	Chhatim	Alstonia scholaris (L.) R.Br.	Apocynaceae	
10	Kanta-Notey	Amaranthus spinosus L.	Amaranthaceae	
11	Notey	Amaranthus viridis L.	Amaranthaceae	
12	Kajubadam	Anacardium occidentale L.	Anacardiaceae	
13	Kalmegh	Andrographis paniculata Nees	Acanthaceae	
14	Nona-Ata	Annona reticulata L.	Annonaceae	
15	Kadam	Anthocephalus cadamba	Rubiaceae	
		(Roxb.) Bosser		
16	Anantalata	Antigonon leptopus Hook. & Arn.	Polygonaceae	
17	Sialkanta	Argemone mexicana L.	Papaveraceae	
18	Neem	Azadirachta indica A.Juss	Meliaceae	
19	Janti	Barleria cristata Lam.	Acanthaceae	
20	Bansh	Bambusa arundinacea Willd	Poaceae	
21	Tal	Borassus flabellifer L.	Arecaceae	
22	Simul	Bombax ceiba L.	Bombacaceae	
23	Punornova	Boerhavia repens L.	Nyctaginaceae	
24	Pival	Buchanania lanzan Spreng.	Anacardiaceae	
25	Palash	Butea frondosa Roxb.	Fabaceae	
26	Akanda	<i>Calotropis procera</i> (Aiton) W.T. Aiton	Apocynaceae	
27	Sibjal phool	Cardiospermum halicacabum	Sapindaceae	
28	Bandarlathi	Cassia fistula L.	Caesalpiniaceae	
29	Nayantara	<i>Catharanthus roseus</i> (L.) G Don	Apocynaceae	
30	Thankuni	<i>Centella asiatica</i> Urb.	Aniaceae	
31	Bethosak	Chenopodium album L.	Chenopodiaceae	
32	Chorkanta	Crysopogon aciculatus Trin.	Poaceae	
33	Hariora	Cissus auadrangularis L.	Vitaceae	
34	Harhura	Cleome viscosa L.	Capparidaceae	
35	Ghetu	Clerodendrum viscosum	Verbenaceae	
20		Vent.	G 11	
36	Telakucha	Coccinia grandis (L.) Voigt	Cucurbitaceae	
37	Kanshira	Commelina benghalensis L.	Commelinaceae	
38	Bon-Tulsi	Croton bonplandianus Baill.	Euphorbiaceae	
39	Swarnalata	Cuscuta reflexa Roxb.	Cuscutaceae	
40	Doob ghas	Cynodon dactylon (L.) Pers.	Poaceae	
41	Mutha ghas	Cyperus rotundus Kunth	Cyperaceae	
42	Sisu	Dalbergia sissoo Roxb.	Fabaceae	
43	Gulmohar	Delonix regia Raf.	Caesalpiniaceae	
44	Surjasisir	Drosera burmanni DC.	Droseraceae	
45	Kend	Diospyros melanoxylon Roxb.	Ebenaceae	
46	Keshuth	Eclipta prostrata L.	Asteraceae	
-		r · · · r · · · · · · · · · · · · · · ·		

Table 1.	Continued.
Table L.	Commucu.

Sl. No.	Local name	Botanical name	Family
47	Hingche	Enhydra fluctuans Lour.	Asteraceae
48	Sursuri ghas	Eragrostis tenella Benth.	Poaceae
49	Eucalyptus	Eucalyptus globulus Labille	Myrtaceae
50	Bhui ankra	Evolvulus nummularius L.	Convolvulaceae
51	Bot	Ficus benghalensis L.	Moraceae
52	Dumur	Ficus hispida L.f.	Moraceae
53	Jagna-Dumur	Ficus racemosa Wall.	Moraceae
54	Ashwattha	Ficus religiosa L.	Moraceae
55	Gime shak	<i>Glinus oppositifolius</i> (L.) Aug. DC.	Molluginaceae
56	Ulatchandal	Gloriosa superba L.	Liliaceae
57	Gurmara	Gymnema sylvestre R.Br.	Apocynaceae
58	Hatisur	Heliotropium indicum L.	Boraginaceae
59	Anantamul	<i>Hemidesmus indicus</i> (L.).	Apocynaceae
		R.Br.	1 5
60	Kurchi	<i>Holarrhena antidysenterica</i> (L.) Wall. ex A.DC.	Apocynaceae
61	Kulekhanra	Hygrophila spinosa T. And.	Acanthaceae
62	Kolmi	<i>Ipomoea aquatica</i> Forssk.	Convolvulaceae
63	Shyama lata	<i>Ichnocarpus frutescens</i> (L.) W.T. Aiton	Apocynaceae
64	Lal Verenda	Jatropha gossypifolia L.	Euphorbiaceae
65	Verenda	Jatropha curcas L.	Euphorbiaceae
66	Jarool	Lagerstroemia speciosa Pers	. Lythraceae
67	Chotra	Lantana camara L.	Verbenaceae
68	Shwetdron	Leucas aspera Spreng.	Lamiaceae
69	Mahua	Madhuca indica J. F. Gmel.	Sapotaceae
70	Susni	Marsilea quadrifolia L.	Marsileaceae
71	Baghnokh	Martynia annua L.	Martyniaceae
72	Laijabati	Mimosa pudica Mill.	Mimosaceae
73	Bon Karla	Momordica dioica Wall.	Cucurbitaceae
74	Saine	Moringa oleifera Lamk.	Moringaceae
75	Padma	Nelumbo nucifera Gaertn.	Velumbonaceae
76	Shalook	Nymphaea lotus L	Nymphaeaceae
77	Sada Tulsi	Ocimum basilicum L	Lamiaceae
78	Kalo Tulsi	Ocimum sanctum L	Lamiaceae
79	Khet-papra	Oldenlandia corvmbosa I	Rubiaceae
80	Amrul	Oralis corniculata I	Oxalidaceae
81	Gandal pata	Paederia scandens (Lour.) Merr.	Rubiaceae
82	Keya	Pandanus fascicularis Lam.	Pandanaceae
83	Kanakchura	Peltophorum pterocarpum Backer	Caesalpiniaceae
84	Khejur	<i>Phoenix acaulis</i> Buch-Ham. ex Roxb.	Arecaceae
85	Bhuin-amla	Phyllanthus niruri L.	Euphorbiaceae
86	Karanja	Pongamia pinnata Pierre	Fabaceae
87	Redy	Ricinus communis L.	Euphorbiaceae
88	Kash	Saccharum spontaneum L.	Poaceae
89	Kalkasundi	Senna occidentalis (L.) Link	Caesalpiniaceae
90	Swet Berela	Sida cordifolia L.	Malvaceae
91	Shal	Shorea robusta C.F. Gaertn.	Dipterocarpac- eae
92	Amra	Spondias pinnata (L.f.) Kurz	Anacardiaceae
93	Kalo Jam	Syzygium cumini (L.)	Myrtaceae

Table 1. Continued.

Sl. No.	Local name	Botanical name	Family
		Skeels.	
94	Arjun	Terminalia arjuna W. & A.	Combretaceae
95	Tentul	Tamarindus indica L.	Caesalpiniacea
96	Segun	Tectona grandis L.f.	Verbenaceae
97	Kolke	Thevetia neriifolia Juss.	Apocynaceae
98	Tridaksha	Tridax procumbens L.	Asteraceae
99	Nishinda	Vitex negundo L.	Verbenaceae
100	Kul	Ziziphus mauritiana Lam.	Rhamnaceae

the interaction to the effect that the diseases which the practitioners of folk-medicines treat; can be broadly categorized into following 2 groups:

1. Acute diseases This class commonly covers

diseases like fever including Malaria, cough and cold, Diarrhoea and dysentery, Colic pain, Constipation, Wound/injury including bone fracture, snake bite, scorpion bite and animal bites (such as bites of dog, cat, mongoose, and jackal), skin diseases (Eczema/ Scabies), Nausea/ vomiting, Measles, Conjunctivitis, muscle cramp.

2. *Chronic diseases* This category generally includes diseases like Tetanus, Tumour, Piles, Respiratory disorder, Bronchitis, Rheumatism and Arthritis, Hepatitis, Asthma, Gastric and Mouth ulcer, Obesity, Diabetes, Tuberculosis, Leprosy, Leucorrhoea, Migraine, Epilepsy, Cancer, Sexually transmitted Infections (STIs) such as Gonorrhoea and Syphillis, Anaemia, Gallstones, Hypertension, Bleeding Gum (Gingivitis), Diphtheria, Urinary Tract infection,

Table 2. Therapeutic uses of 35 wild plants ('A' = Acute diseases and '	B' = Chronic diseases).
---	-------------------------

Sl. No.	Therapeutic utility	Local name	Botanical name
1	(A) Fever, Colic pain and Animal bites	Kunch	Abrus precatorius
	(B) Tumour, Bronchitis, Tetanus and Hepatitis		
2	(A) Cough and Cold and Diarrhoea.	Basak	Adhatoda vasica
	(B) Asthma and killing of Intestinal Parasites.		
3	(B) Diabetes, Gastric Ulcer and removal of intestinal parasites.	Bel	Aegle marmelos
4	(A) Bleeding gum and Scorpion bite	Sirish	Albizia lebbeck
	(B) Leprosy and Epilepsy		
5	(A) High Fever and Malaria.	Chhatim	Alstonia scholaris
	(B) Cancer, Tumour and Ulcer.		
6	(A) Colic pain and Snake bite	Kanta-Notey	Amaranthus spinosus
	(B) Diabetes, Rheumatism and Ulcer	•	*
7	(A) Diarrhoea, Fever and Skin diseases	Kajubadam	Anacardium occidentale
	(B) Diabetes, Anaemia and Gallstones		
8	(A) Fever, Colic pain, Appetite loss and Diarrhoea	Kalmegh	Andrographis paniculata
	(B) Hypertension, Diabetes and Tuberculosis	C	
9	(A) Malaria and Skin diseases	Neem	Azadirachta indica
	(B) Diabetes, Rheumatism and Bleeding Gum		
10	(A) Nausea and Vomiting	Tal	Borassus flabellifer
	(B) Diabetes and Respiratory disorder		0 0
11	(A) Fever and Cough and Cold	Piyal	Buchanania lanzan
	(B) Asthma	2	
12	(B) Piles and Tumours	Palash	Butea frondosa
13	(A) Scabies and Wound/Injury	Nayantara	Catharanthus roseus
	(B) Hypertension, Diabetes and Cancer	2	
14	(A) Fever and Skin diseases	Thankuni	Centella asiatica
	(B) Anaemia, Gastric Ulcer and Leprosy		
15	(A) Cough and Cold, Muscle Cramps, Measles, Dysentery and Snake bite	e Doob ghas	Cvnodon dactylon
	(B) Diabetic Retinopathy and Epilepsy	C	
16	(A) Diarrhoea	Keshuth	Eclipta prostrata
	(B) Hepatitis, Respiratory disorders and Diphtheria.		T T T T T T T
17	(B) Asthma, Obesity, Diabetes, Tuberculosis, Leprosy and Piles	Jagna Dumur	Ficus racemosa
18	(A) Snake bite	Gurmara	Gymnema sylvestre
	(B) Obesity and Diabetes		

Table 2. Continued.

Sl. No.	Therapeutic utility	Local name	Botanical name
19	(A) Fever and Colic pain	Hatisur	Heliotropium indicum
	(B) Rheumatism, Ulcer and STI		
20	(B) Rheumatism, Leprosy and STI	Anantamul	Hemidesmus indicus
21	(A) Dysentery, Malaria and Snake bite	Kurchi	Holarrhena antidysenterica
	(B) Leprosy		
22	(B) Rheumatism, STI and Liver dysfunction	Kulekhanra	Hygrophila spinosa
23	(A) Wound/Injury, Eczema, Scabies and Constipation	Lal-verenda	Jatropha gossypifolia
	(B) Rheumatism, Ulcer, STI and Leprosy		
24	(B) Asthma and Jaundice	Shwetdron	Leucas aspera
25	(B) Diabetes, Rheumatism and Ulcer	Mahua	Madhuca indica
26	(A) Diarrhoea and Skin diseases	Susni	Marsilea quadrifolia
	(B) Hypertension and Respiratory disorders		
27	(A) Measles, Wound/Injury and Constipation	Sajne	Moringa oleifera
	(B) Diabetes, Conjunctivitis, Goiter, Asthma, Epilepsy and Ulcer		
28	(B) Cancer, Kidney dysfunction, Hypertension, STI, Diabetes and Piles	Padma	Nelumbo nucifera
29	(B) Diabetes, Gastric Ulcer, Liver and Kidney dysfunctions, Cancer and Arthritis	Tulsi	Ocimum sanctum
30	(A) Dysentery and Colic pain	Gandalpata	Paederia scandens
	(B) Jaundice and Arthritis	-	
31	(B) Jaundice, Diabetes, Gallstone, Liver dysfunction and Urinary	Bhui-Amla	Phyllanthus niruri
	Tract Infection		
32	(A) Asthma and Tuberculosis	Swet-Berela	Sida cordifolia
33	(B) Diabetes, Anaemia, Tumour and Hypertension	Arjun	Terminalia arjuna
34	(A) Colic pain, Diarrhoea and Snake bite	Tentul	Tamarindus indica
	(B) Obesity, Respiratory disorders and Renal Cell Carcinoma		
35	(B) Jaundice, Arthritis, Leucorrhoea, Obesity, Diabetes, Liver and Ocular disorders	r Kul	Ziziphus mauritiana

dysfunctions of liver and kidney, Jaundice, Insomnia, Goiter, Paralysis, Ocular disorders, killing of intestinal parasites (Taeniasis and Ascariasis).

With this understanding in mind, 35 plants out of hundred wild plants (as noted inTable 1) are short-listed based on category-wise therapeutic utility and mentioned in Table 2. Significant findings of the study are :

Practitioners of folk-medicines have no formal medical education.

They depend on the neural wisdom gained from their forefathers.

They do symptomatic treatment of diseases.

They make medicines from local plants that grow wild at the neighbourhood vicinity.

Beside plant body, plant-parts like stem, bark, leaf, roots, fruits, seeds, are used as ingredients of

folk-medicines.

Harmful side effects of folk-medicines are interestingly negligible.

CONCLUSION

Treatment with folk-medicines using plant-parts of the ethno-medicinal plants is practised through generations. The silent learning and knowledge flowing down the generations in tribal populace are assimilated in the form of neural wisdom. Present study endorses the reality of using folk-medicines for the treatment and cure of diseases and the practice is found to have won the confidence of the general commons of the covered tribal villages (Santhosha and Kar 2017). The established applicability of this neural wisdom is viable for ushering up new approaches for researches to make in the field of pharmaceutical industries. This will become a natural blessing to promote manufacture of bio-medicines out of those phyto-chemicals (active principles) present in different parts of the ethno-medicinal plants within the meaning of NTFPs (Dinda *et al.* (2020).

It is supposed that there is the immense potentiality of NTFPs for use as viable bio-medicines if manufactured in commercial scale. This will prevent the incidence of drug resistance and allied menace of side effects that we generally experience while taking chemically synthesized medicines/ drugs. Genetic interaction of human beings with the environment will best be supported through applications of biologically compatible drug administration. Nature will be happy then and Earth will turn to be the blissful shelter where human beings will love to live in.

ACKNOWLEDGMENT

Authors are grateful to acknowledge the help and co-operation received from the Department of Conservation Biology of Durgapur Government College during the course of conducting field study and in identification of plant specimens collected. Authors are indebted to Sri Sandip K. Dutta, Special Secretary to Government of West Bengal for extending his cordial co-operation and support. Authors are also thankful to the District Magistrate of Birbhum, Divisional Forest Officer of Birbhum Forest Division and other Officers of Block Administration of different Development Blocks for extending logistic and administrative support to ease of doing field visits, interactions with tribal commons and collections of materials.

REFERENCES

Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181(1): 1–20. DOI: https://doi.org/10.1111/boj.12385

- Chatterjee ND, Das K (2017) Rational resource management and the role of traditional knowledge among the santhal and the Bhumij Tribes of Binpur II Block, Paschim Medinipur, West Bengal. *Natural Resources Management for Sustainable Development and Rural Livelihoods* 1 : 43-58.
- Choudhury S, Chowdhury HR, Mandal S, Ghosh A (2013) Folklore knowledge on medicinal usage of the tribal belts of Birbhum district, West Bengal, India. *Int J Bot and Res* 3(2): 43-50.
- Dinda S, Ghosh S, Chatterjee ND (2020) Understanding the commercialization of patterns of Non-timber Forest Products and their contribution to the enhancement of tribal livelihoods: An empirical study from Paschim Medinipur District, India. Small-Scale Forestry 19: 371-397.
- Koner A, Mondal A (2022) Ethnobotanical uses of plants in Birbhum district, West Bengal, India. *Journal of Medicinal Plants Studies* 10 (1) : 82-86. DOI: https://doi.org/10.22271/plants.2022.v10.i1b.1365
- Madani I, Ali LI, Nur EBESE (2017) Evidences from morphological investigations supporting APGIII and APGIV Classification of the family Apocynaceae Juss., nom Cons. *Euro*-
- pean Academic Research 6 (10): 8259-8266.
 Paria ND (2022) Plant Taxonomy and Biodiversity. First edn, pp 235-386.
- Pradhan B, Rahaman CH (2019) Documentation of Medicinal Flora of Birbhum district, West Bengal, India 3(10): 120-124.
- Prain D (1903). Bengal Plants, Botanical Survey of India.
- Prasathkumar M, Anisha S, Dhrisya C, Becky R, Sadhasivam S (2021) Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review. *Phytomedicine Plus* 1(2): 100029

DOI: https://doi.org/10.1016/j.phyplu.2021.100029

- Santhosha GR, Kar A (2017) Medicinal Plant Resources of South Bengal. Published by Research Wing, Directorate of Forests, Government of West Bengal.
- Sarkar SR, Mondal S, Mandal S (2016) Phyto-diversity of Ganpur forest, Birbhum district, West Bengal, India concerning their Medicinal properties. *International Journal of Current Microbiology and Applied Sciences* 5 (6): 973-989. DOI: http://dx.doi.org/10.20546/ijcmas.2016.506.104
- Yu Shi, Chao Zhang, Xiaodong Li (2021) Traditional medicine in India. Journal of Traditional Chinese Medical Sciences 8:S51-S55. DOI: https://doi.org/10.1016/j.jtcms.2020.06.007