Environment and Ecology 39 (2) : 432-441, April-June 2021 ISSN 0970-0420

Effect of Pretreatments and Drying Methods on Ascorbic Acid, Chlorophyll Content and β-Carotene Content of Drumstick (*Moringa oleifera* Lam.) Leaves and Shoot

Aditya Hegde, D. V. Swami, M. Rajasekhar, D. R. Salomi Suneetha

Received 9 March 2021, Accepted 16 April 2021, Published on 12 May 2021

ABSTRACT

The investigation was carried out during November 2017 to May 2018. The main objective of this experiment was to study the effect of pre-treatments and drying methods on nutritional quality and shelf life stability of leaves and shoots of drumstick powder. The experiment was carried out in a factorial Completely Randomized Block Design with two replications comprising 18 treatment combinations from three factors i.e.plant material with three levels, pre-treatment with three levels and drying method with two levels. Result observed that ascorbic acid, chlorophyll content and β-carotene content showed decreasing trend from initial day to180 days of storage. Un-blanched plant materials (S₂) recorded the highest ascorbic acid and chlorophyll content and water blanched sample recorded the highest beta-carotene content among pre- treatments. Mature leaf without petiole, rachis with rachilla and leaflets (P₃) recorded the highest chlorophyll, β -carotene and ascorbic acid observed maximum in mature leaf with petiole and rachis. Mechanical drier (home scale drier) found that the best for retaining of the all above nutrients. In interaction un-blanched mechanical dried samples (S₃D₂) recorded highest ascorbic acid, chlorophyll content and β -carotene content observed maximum in water blanched mechanical (S₁D₂) dried drumstick leaves and shoot during storage period.

Keywords Ascorbic acid, β -carotene, Chlorophyll, Home scale drier.

INTRODUCTION

Drumstick (*Moringa oleifera* Lam.) is a perennial tree, considered as underutilized plant that comes under the family Moringaceae. It is cultivated in home gardens and field for its leaves, flowers and tender fruits which are used as nutritious vegetables. It is highly valued for the distinct and appealing flavor of its tender pods. They are rich source of proteins, minerals and vitamins (Singh *et al.* 2012). Drumstick leaves contain more vitamin A than carrots, more calcium than milk, more iron than spinach, more vitamin C than oranges and more potassium than bananas (Ali *et al.* 2014).

Generally during drying, changes occur in the product due to the exposure to the temperature. To control these change during drying and pre-treatments

Aditya Hegde*, D. V. Swami, M. Rajasekhar, D. R. Salomi Suneetha

College of Horticulture, Dr.Y.S.R.H.U, Venkataramannagudem. West Godavari (Dist) 534101, Andhra Pradesh, India Email: ashegde177@gmail.com

^{*}Corresponding author

were given to the fresh products before processing. The main reasons for treating the produce before drying is to stop enzymatic action, to improve flavor, color, to minimize the nutrient loss, to stop decomposition by the microbes and to ensure even drying. To obtain a dried product of excellent quality, the raw produce must be harvested at the right time and handled carefully. Blanching was done in order to inactivate the enzymes and to remove the intercellular air from the tissues and to reduce the drying time. Potassium metabisulphite was used as a stable source of sulfur dioxide which in turn prevents the formation of brown substances.

MATERIALS AND METHODS

Drumstick variety PKM-1 seedlings were raised and planted in the field, located at Post-harvest Technology Research Station, Venkataramannagudem, West Godavari district, Andhra Pradesh. Drumstick leaves were harvested according to the treatments. Tender shoots, mature shoots with petioles and rachis as well as mature leaves without petioles were harvested with the help of secateurs. For each treatment 1 kg of plant materials was taken.

Chemical i.e., 0.5% KMS used for the pre-treatment and it was prepared by dissolving 5 g of KMS in one liter of distilled water. Chemical treatment was given by dipping of drumstick leaf and shoots in pre-treatment solutions. The ratio of pre-treatment solution and sample (4:1.) was 4 L per kg of drumstick leaves and shoots. Pre-treatmented drumstick leaves and shoots were dried in the sun and mechanical drier (home scale drier model EZIDRI Ultra FD1000).

The data collected on the following observations during the course of investigation were statistically analyzed by adopting the standard procedure of Panse and Sukhatme (1985).

Ascorbic acid (mg 100 g⁻¹)

Ascorbic acid of fresh and dried powder was estimated as suggested by Ranganna (1986).

Titer value \times Dye factor \times Volume made up	
Ascorbic acid = ×	100
(mg 100 g ⁻¹) Volume taken \times Weight of the same	nple

β-carotene (mg 100 g⁻¹)

Chlorophyll content (mg 100 g⁻¹)

Chlorophyll content of fresh and dried powder was estimated as suggested by Ranganna (1986) by using acetone as a reagent.

Chlorophyll (mg 100 g⁻¹) = 20.2 (A645) +8.02 (A663)*V/1000*W

Where,

A = Absorbance at specific wave length.V = Final volume of chlorophyll extract with 80% acetone.W = Fresh weight of extracted leaf tissue.

RESULTS AND DISCUSSION

Analysis of fresh leaf and shoot

Ascorbic acid (mg 100 g⁻¹)

The mean ascorbic acid content over the different treatment combinations decreased from (235.99 mg 100 g⁻¹) on the initial day of storage to (101.30 mg 100 g⁻¹) at 180 days of storage (Table 1). Un-blanched plant materials (S_2) recorded the highest ascorbic acid content 247.11 mg 100 g⁻¹ (initial day of storage) to 107.85 mg 100 g⁻¹(180 days of storage) and the lowest ascorbic acid content 230.14 mg 100 g⁻¹ (initial day of storage) to 98.07 mg 100 g^{-1} (180 days of storage) recorded in combination of water blanched with 0.5% KMS treatment (S_2) . Among the plant material at initial day of storage, the highest ascorbic acid content 298.04 mg 100 g⁻¹ (initial day of storage) to149.25 mg 100 g⁻¹(180 days of storage) recorded in mature leaf with petiole and rachis (P_2) as compared to the mature leaf without petiole, rachis with rachilla and leaflets 228.40 mg 100 g⁻¹ (initial day of storage) to 95.94 mg 100 g⁻¹ (180 days of storage) and terminal young shoot (P₁) 181.54 mg 100 g⁻¹ (initial day of

Plant	Drying				Pretreatr Days of	nent (S) storages			
naterial	method		Initia	1	Dujool	storages		30	
(P)	(D)	\mathbf{S}_{1}	S ₂	S ₃	Mean	\mathbf{S}_{1}	S_2	S ₃	Mean
	D	186.35	164.47 1	73.30	174.70	163.33	146.23	151.81	153.79
P ₁	D_2	200.19	174.54 1	90.40	188.37	182.39	153.79	168.53	168.24
	Mean		169.50 1	81.85	181.54	172.86	150.01	160.17	161.01
	D_1			10.55	300.98	261.15	283.28	283.72	276.71
P ₂	D_2		300.95 3	17.92	295.10	240.40	270.99	287.24	266.21
	Mean			14.24	298.04	250.77	278.13	285.48	271.46
	D_1			33.72	218.76	197.04	182.02	203.28	194.11
P ₃	D_2			56.79	238.04	202.11	212.52	228.15	214.26
	Mean	220.96 2		45.25	228.40	199.57	197.27	215.71	204.18
	_				eatment (S) a				
	D_1			39.19	231.48	208.17	204.51	212.94	208.54
	D ₂			55.04	240.51	209.30	212.43	227.97	216.56
	Mean	230.73 2	230.14 2	47.11	235.99	208.73	208.47	220.45	212.22
Comj	paring means	SE	lm	CD	at 5%	S	Em		CD at 5%
	Р	1.3	93	4	.137	1	.259		3.742
	S	1.3			.137		.259		3.742
	D	1.1			.378		.028		3.055
	P x S	2.4			.166		.181		6.481
	S x D	1.9			.851		.781		5.292
	РхD	1.9			.851		.781		5.292
]	$P \times S \ge D$	3.4		1	0.134		.085		9.166
able 1. C	Continued.				Ductorstan				
Plants	Drying				Pretreatm Days of st				
meterial			ť	50	Duys 01 5	orages	90		
(P)	(D)	S_1	S ₂	S ₃	Mean	\mathbf{S}_1	S ₂	S ₃	Mean
	D	142.47	126.84	129.38	8 132.9	0 121.	28 107.24	110.29	112.94
P ₁	D_2^{-1}	160.38	132.49	148.6				129.10	127.04
- 1	Mean	151.42	129.66	138.99				119.69	119.99
	D_1	232.07	252.29	252.50				231.72	224.56
P ₂	D_2^{1}	208.03	239.22	253.2	1 233.4	9 188.		238.73	214.09
2	Mean	220.05	245.75	252.88				235.23	219.32
	D_1	166.74	159.44	180.34	4 168.8	4 147.	66 139.75	162.00	149.80
P ₃	$D_2^{'}$	183.68	180.43	203.69				183.44	168.40
3	Mean	175.21	169.93	192.02	2 179.0	5 155.	54 149.04	172.72	159.10
						ent (S) and	drying method		
	D_1	166.74	159.44	180.34	4 168.8	4 147.	66 139.75	162.00	149.80
	D_2	183.68	180.43	203.69				183.44	168.40
	Mean	175.21	169.93	192.02				172.72	159.10
	Comparing n	neans	SEm		CD at 5		SEm		CD at 5%
	Р		1.238		3.677		1.113		3.308
	S		1.238		3.677		1.113		3.308
	D		1.011		3.002		0.909		2.701
	$P \times S$		2.144		6.369		1.929		5.730
	$S \times D$		1.750		5.200		1.575		4.679
	$P \times D$		1.750		5.200		1.575		4.679
	$P \times S \times D$		3.032		9.007		2.727		8.104

Table 1. Effect of pre-treatments, plant material and drying methods on ascorbic acid (mg 100 g⁻¹) of drumstick leaf and shoot pow-der. P_1 : Terminal young shoot. P_2 : Mature leaf with petiole and rachis P_3 : Mature leaf without petiole, rachis with rachilla and leaflets S_1 : Water blanching S_2 : Water blanching+KMS 0.5 % S_3 : Without blanching (control) D_1 : Sun drying D_2 : Mechanical drier (EZIDRI)

Table 1. Continued.

Plant material	Drying method					Days o	tment (S f storage	/					
(P)	(D)			120			50			180			
		\mathbf{S}_{1}	S_2	S_3	Mean	\mathbf{S}_1	S_2	S_3	Mean	\mathbf{S}_1	S_2	S ₃	Mean
	D	101.73	86.72	88.20	92.22	82.35	68.45	68.19	72.99	62.84	48.16	49.88	53.63
P ₁	$D_2^{'}$	120.14	92.76	102.46	105.12	100.53	72.56	81.20	84.76	79.65	50.23	61.52	63.80
1	Mean	110.94	89.74	95.33	98.67	91.44	70.50	74.69	78.88	71.24	49.19	55.70	58.71
	D ₁	188.27	202.00	197.72	195.99	169.22	180.61	175.05	174.96	147.73	161.00	154.50	154.41
P_2	D_2	156.36	193.54	206.87	185.59	136.18	172.07	187.12	165.12	114.27	152.34	165.67	144.09
2		172.31	197.77	202.29	190.79	152.70	176.34	181.09	170.04	131.00	156.67	160.08	149.25
	D_1	123.21	119.97	137.98	127.05	103.44	101.02	117.82	107.42	84.28	80.04	96.80	87.04
P ₃	D,	141.68	135.98	157.44	145.03	121.40	115.82	137.73	124.98	100.12	96.69	117.75	104.85
3	Mean	132.44	127.97	147.71	136.04	112.42	108.42	127.77	116.20	92.20	88.36	107.27	95.94
			1	For compa	aring pre-tre	atment (S) and dr	ying me	thod (D)				
Ľ) ,	137.74	136.23	141.30	138.42	118.33	116.69	120.35	118.46	97.13	96.40	100.39	94.64
Ľ		139.39	140.76	155.59	145.25	119.37	120.15	135.35	124.95	99.17	99.75	114.98	107.96
Me		138.56	138.49	148.44	141.83	118.85	118.42	127.85	121.71	98.15	98.07	107.68	101.30
Comparir	ng means		SEm		CD at 5%	S	Em	CD at	5%	SEm		CD at 5%	
Р			1.010		3.001	1.	.095	3.254	ł	1.046		3.108	
S			1.010		3.001		.095	3.254		1.046		3.108	
D)		1.011		3.002		894	2.657		0.854		2.538	
P x S	5		1.750		5.198	1.	897	5.635	5	1.812		5.383	
S x l	D		1.429		4.244	1.	549	4.601		1.479		4.395	
РхI	D		1.429		4.244	1.	549	4.601		1.479		4.395	
P x S x	D		2.474		7.351	2.	.682	7.970)	2.562		7.613	

storage) to 58.71 mg 100 g⁻¹ (180 days of storage). The mechanical drying method (D_2) resulted in higher ascorbic acid content 240.51 mg 100 g⁻¹ (initial day of storage) to 107.96 mg 100 g⁻¹ (180 days of storage) as compared to sun drying method (D_1) 231.48 mg 100 g⁻¹ (initial day of storage) to 94.64 mg 100 g⁻¹ (180 days of storage).

The interaction between pre-treatment and drying methods, the highest ascorbic acid content 255.04 mg 100 g⁻¹ (initial day of storage) to114.98 mg 100 g⁻¹ (180 days of storage) recorded in un-blanched mechanical dried samples (S_3D_2) and the lowest ascorbic acid content 223.51 mg 100 g⁻¹ (initial day of storage) to 96.40 mg 100 g⁻¹ (180 days of storage) recorded in water blanching with 0.5% KMS and sun dried samples (S_2D_1) The effect of interaction between plant material, pre-treatment and drying method, maximum ascorbic acid content 317.92 mg 100 g⁻¹ (initial day of storage) recorded in the treatment combination of un-blanched

mature leaf with petiole and rachis with mechanical drier ($P_2S_3D_2$), while minimum ascorbic acid content 164.47 mg 100 g⁻¹ (initial day of storage) to48.16 mg 100 g⁻¹ (180 days of storage) recorded in the treatment combination of water blanching with 0.5% KMS and terminal young shoot dried in sun ($P_1S_2D_1$).

Un-blanched plant materials recorded the highest ascorbic acid and it might be due to water-soluble nature of vitamin C, which was causes, it to leach into cooking water, which was generally discarded after cooking. Mechanical drying method resulted in higher ascorbic acid content as compared to sun drying method which was might be due to instability of ascorbic acid at high temperatures and exposure of samples for longer period in the solar drier. Similar results recorded by Udhal *et al.* (2006).

Ascorbic acid a highly soluble substance and thermal processing leads to degradation of ascorbic acid. Similar results recorded by the Patel *et al.* (2016).

Plant	Drying											
material	method		Initi	ial		-	30					
(P)	(D)	\mathbf{S}_{1}	\mathbf{S}_2	S_3	Mean	\mathbf{S}_{1}	S_2	S_3	Mean			
	D_1	131.46	134.11	135.85	133.81	126.40	126.14	129.61	127.38			
P_1	D_2	141.52	143.78	149.42	144.91	138.56	140.48	147.13	142.06			
	Mean	136.49	138.95	142.64	139.36	132.48	133.31	138.37	134.72			
	D_1	112.64	116.04	147.05	125.24	106.40	110.71	141.78	119.63			
P_2	D_2	138.39	141.81	144.67	141.62	132.90	136.29	142.50	137.23			
	Mean	125.52	128.93	145.86	133.43	119.65	123.50	142.14	128.43			
	D_1	133.41	137.32	139.11	136.61	127.49	130.84	135.01	131.11			
P ₃	D_2	143.47	142.80	159.91	148.73	137.39	137.35	154.78	143.17			
	Mean	138.44	140.06	149.51	142.67	132.44	134.09	144.89	137.14			
	_				atment (S) and							
	D ₁	125.83	129.15	140.67	131.88	120.09	122.56	135.46	126.03			
	D ₂	141.12	142.79	151.33	145.08	136.28	138.04	148.13	140.81			
C	Mean	133.48	135.97	146.00	138.48	128.18	130.30	141.79	133.42			
Comp	aring mean	8	SEm		CD at 5%		Em	CD at 5%				
	P		0.370		1.099		327	0.970				
	S		0.370		1.099		327	0.970				
	D		0.302		0.897		267	0.792				
	P x S S x D		0.641		1.903		566	1.681				
	S X D P X D		0.523 0.523		1.554 1.554		462 462	1.372				
	S x D		0.323		2.691		402 800	1.372 2.377				
	Continued.		0.900		2.091	0.	000	2.377				
					D () ()	(2)						
Plant	Drying				Pretreatment (Days of storag							
	method		60			-	90					
(P)	(D)	$\mathbf{S}_{_{\mathrm{I}}}$	S_2	S_3	Mean	\mathbf{S}_{1}	S_2	S_3	Mean			
	D	119.91	120.23	124.42	121.52	114.13	114.10	118.22	115.48			
P ₁	D_2	135.05	134.90	140.81	136.92	129.12	128.34	135.15	130.87			
	Mean	127.48	127.56	132.61	129.22	121.62	121.22	126.68	123.18			
	D_1	100.00	106.34	135.19	113.84	94.58	100.93	129.56	108.36			
P_2	D_2	125.32	129.29	138.55	131.05	119.75	123.74	132.55	125.35			
	Mean	112.66	117.82	136.87	122.45	107.17	112.34	131.06	116.85			
P	D ₁	121.98	125.31	128.01	125.10	116.06	118.30	121.91	118.75			
P_3	D ₂	131.86	131.94	149.26	137.69	125.04	125.53	143.33	131.30			
	Mean	126.92	128.63	138.64	131.39	120.55	121.91	132.62	125.03			
	D	113.95			re-treatment (S			123.22	114.19			
	D ₁	113.95	117.29 132.04	129.20 142.87	120.15 135.21	108.25 124.63	111.10 125.87	123.22	114.19			
	D ₂ Mean	130.74 122.34	132.04 124.66	142.87 136.03	135.21	124.03 116.44	125.87 118.48	137.01 130.11	129.17			
Con	nparing mea		124.00 SEm	130.03	CD at 5%	110.44	SEm	CD at :				
Con	P		0.385		1.145		0.347	1.030				
	P S		0.385		1.145		0.347	1.030				
	D		0.385		0.935		0.283	0.841				
	$P \times S$		0.667		1.983		0.285	1.784				
	$S \times D$		0.545		1.619		0.000	1.784				
	$P \times D$		0.545		1.619		0.490	1.457				

2.804

0.849

2.523

Table 2. Effect of pre-treatments, plant material and drying methods on chlorophyll (mg 100 g⁻¹) of drumstick leaf and shoot powder. P_1 : Terminal young shoot. P_2 : Mature leaf with petiole and rachis P_3 : Mature leaf without petiole, rachis with rachilla and leaflets S_1 :Water blanching S_2 : Water blanching + KMS 0.5 % S_3 : Without blanching (control) D_1 : Sun drying D_2 : Mechanical drier (EZIDRI)

 $P \times S \times D$

0.944

Table 2 Continued.

Plant material (P)	Drying method (D)							eatment (of storag 150				180	
				120									
		S_1	S_2	S_3	Mean	\mathbf{S}_1	S_2	S_3	Mean	S_1	S_2	S_3	Mean
	D ₁	106.68	107.64	112.71	109.01	99.22	99.90	105.62	101.58	91.23	91.25	96.50	92.99
P ₁	D ₂	122.78	122.61	127.71	124.36	113.84	114.75	119.53	116.04	105.44	106.81	111.08	107.44
	Mean	114.73	115.13	120.21	116.69	106.53	107.32	112.58	108.81	98.33	99.03	103.29	100.22
	D ₁	89.30	94.99	122.55	102.28	81.58	87.16	114.80	94.51	74.32	78.59	107.35	86.75
P ₂	D,	113.37	116.39	125.80	118.52	106.47	108.95	118.53	111.31	95.38	101.64	110.62	102.54
-	Mean	101.34	105.69	124.17	110.40	94.02	98.05	116.66	102.91	84.85	90.11	108.99	94.65
	D ₁	109.91	110.80	115.99	112.23	102.48	103.31	108.55	104.78	93.92	95.83	99.72	96.49
F ₃	D_2	119.79	118.50	136.03	124.77	111.90	110.33	128.21	116.81	101.53	101.52	120.33	107.79
	Mean	114.85	114.65	126.01	118.50	107.19	106.82	118.38	110.79	97.72	98.67	110.02	102.14
				For	comparin	ng pre-tre	eatment (S) and di	rying met	hod (D)			
Б)	101 96	104.47	117.08	107.84	94.42	96.78	109.65	100.28	86.48	88.55	101.18	92.07
Ē	1		119.16	129.84	122.55	110.73		122.08	114.72	100.77	103.32	113.67	105.92
	ean		111.82	123.46	115.19		104.06		107.50	93.63	95.93	107.43	99.001
Compari			SEm	120110	CD at		SE		CD a		SEm	CD at	
Р			0.446		1.326		0.5	510	1.	515	0.601	1	.787
S			0.446		1.326		0.5	510	1.	515	0.601	1	.787
D			0.364		1.083		0.4	116	1.	237	0.491	1	.459
Рх	S		0.773		2.297		0.8	383	2.	624	1.042	3	.095
S x	D		0.631		1.875			721	2.	142	0.851		.527
Рх	D		0.631		1.875		0.7	721	2.	142	0.851	2	.527
PxSz	x D		1.093		3.248		1.2	249	3.	710	1.473	4	.377
D P x S x P x	D D		0.364 0.773 0.631 0.631		1.083 2.297 1.875 1.875		0.4 0.8 0.7 0.7	416 883 721 721	1. 2. 2. 2.	237 624 142 142	0.491 1.042 0.851 0.851	1 3 2 2	.4 .0 .5

Kaushal *et al.* (2013) reported similar result in colocasia leaves ; they reported that blanching leads to the loss of 20-25% ascorbic acid content in colocasia.

Chlorophyll content (mg 100 g⁻¹)

The mean chlorophyll content value steadily decreased from 138.48 mg 100 g⁻¹ on the initial day of storage to 99.00 mg 100 g⁻¹ at 180 days of storage (Table 2). Un-blanched drumstick leaf and shoot (S_3) recorded the highest chlorophyll content 146.00 mg 100 g⁻¹ (initial day of storage) to 107.43 mg 100 g⁻¹ (180 days of storage) and the lowest chlorophyll content 133.48 mg 100 g⁻¹ (initial day of storage) to 93.63 mg 100 g⁻¹ (180 days of storage) recorded in combination of water blanched drumstick leaf and shoot (S_1). Among the plant material at initial day of storage the highest chlorophyll content 142.67 mg 100 g⁻¹ (initial day of storage) recorded in the mature leaf

without petiole, rachis with rachilla and leaflets (P_3) as compared to terminal young shoot (P_1) 139.36 mg 100 g⁻¹ (initial day of storage) to 100.22 mg 100 g⁻¹ (180 days of storage) and mature leaf with petiole and rachis 133.43 mg 100 g⁻¹ (initial day of storage) to 94.65mg 100 g⁻¹ (180 days of storage). The mechanical drying method (D_2) resulted in the highest chlorophyll content 145.08 mg 100 g⁻¹ (initial day of storage) to 105.92 mg 100 g⁻¹ (initial day of storage) to 92.07 mg 100 g⁻¹ (180 days of storage).

The interaction between pre-treatment and drying methods, the highest chlorophyll content 151.33 mg 100 g⁻¹(initial day of storage) to 113.67 mg 100 g⁻¹ (180 days of storage) recorded in un-blanched mechanical dried samples (S_3D_2) and the lowest chlorophyll content 25.83 mg 100 g⁻¹(initial day of storage) to 86.48 mg 100 g⁻¹(180 days of storage) recorded in water blanching and sun dried samples (S_1D_1). The effect of interaction between plant ma-

Plant material	Drying method				Pretreatn Days of				
(P)	(D)			Initial	Days of	storages	30		
		S_1	S_2	S_3	Mean	\mathbf{S}_1	S ₂	S ₃	Mean
	D	10.39	9.84	10.23	10.15	9.47	9.03	9.28	9.26
P ₁	D_2	19.40	18.00	17.02	18.14	18.25	16.98	16.13	17.12
1	Mean	14.89	13.92	13.63	14.15	13.86	13.00	12.70	13.19
	D_1	12.26	11.32	10.51	11.36	11.25	10.76	9.79	10.60
P_2	D_2	17.79	16.02	17.10	16.97	16.97	15.23	16.12	16.11
-	Mean	15.02	13.67	13.81	14.17	14.11	13.00	12.95	13.35
	D_1	14.05	13.83	12.24	13.37	12.97	12.99	11.14	12.37
P ₃	D_2	21.21	18.43	17.52	19.05	20.14	17.65	16.91	18.23
5	Mean	17.63	16.13	14.88	16.21	16.55	15.32	14.03	15.30
			For con	nparing pre-	treatment (S) a	and drying meth	od (D)		
	D_1	12.23	11.66	10.99	11.63	11.23	10.93	10.07	10.74
	D_2	19.46	17.48	17.21	18.05	18.45	16.62	16.39	17.15
	Mean	15.85	14.57	14.10	14.84	14.84	13.77	13.23	13.95
Comp	aring means		SEm	C	D at 5%	SEm		CD at 5%	
	Р		0.112		0.333	0.099		0.295	
	S		0.112		0.333	0.099		0.295	
	D		0.092		0.272	0.081		0.241	
	P x S		0.194		0.577	0.172		0.511	
	S x D		0.159		0.471	0.140		0.417	
	P x D		0.159		0.471	0.140		0.417	
			0.055		0.016	0.242		0 700	
P	x S x D		0.275		0.816	0.243		0.722	
	x S x D Continued.		0.275		0.816	0.243		0.722	
f able 3. Plant	Continued. Drying		0.275		Pretreatment	z (S)		0.722	
T able 3. Plant naterial	Continued. Drying method		0.275	60		z (S)		0.722	
T able 3. Plant	Continued. Drying	S ₁	0.275	60 S ₃	Pretreatment	z (S)	90 S ₂	0.722 S ₃	Mean
able 3. Plant	Continued. Drying method (D)		S ₂		Pretreatment Days of stor	ages S ₁			Mean 7.49
Plant naterial (P)	Continued. Drying method (D) D ₁	S ₁ 8.55 17.35		S ₃	Pretreatment Days of stor Mean	r (S) ages	S_2	S ₃	
T able 3. Plant naterial	Continued. Drying method (D)	8.55	S ₂ 8.19	S ₃ 8.38	Pretreatment Days of stor Mean 8.37	(S) ages S ₁ 7.65	S ₂ 7.38	S ₃ 7.44	7.49
Plant naterial (P)	Continued. Drying method (D) D ₁ D ₂ Mean	8.55 17.35	S ₂ 8.19 15.90	S ₃ 8.38 15.22	Pretreatment Days of stor Mean 8.37 16.16	(S) ages S ₁ 7.65 16.26	S ₂ 7.38 15.03	S ₃ 7.44 14.18	7.49 15.15
Plant naterial (P) P ₁	Continued. Drying method (D) D ₁ D ₂	8.55 17.35 12.95	S ₂ 8.19 15.90 12.05	S ₃ 8.38 15.22 11.80	Pretreatment Days of stor Mean 8.37 16.16 12.27	(S) ages S ₁ 7.65 16.26 11.95	S ₂ 7.38 15.03 11.21	S ₃ 7.44 14.18 10.81	7.49 15.15 11.32
Plant naterial (P)	Continued. Drying method (D) D ₁ D ₂ Mean D ₁	8.55 17.35 12.95 10.37	S ₂ 8.19 15.90 12.05 9.88	S ₃ 8.38 15.22 11.80 8.87	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70	(S) ages S ₁ 7.65 16.26 11.95 9.41	S ₂ 7.38 15.03 11.21 8.99	S ₃ 7.44 14.18 10.81 8.09	7.49 15.15 11.32 8.83
Plant naterial (P) P ₁	Continued. Drying method (D) D ₁ D ₂ Mean D ₁ D ₂ Mean	8.55 17.35 12.95 10.37 15.86	S ₂ 8.19 15.90 12.05 9.88 14.28	S ₃ 8.38 15.22 11.80 8.87 15.09	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79	S ₂ 7.38 15.03 11.21 8.99 13.32	S ₃ 7.44 14.18 10.81 8.09 14.01	7.49 15.15 11.32 8.83 14.04
Plant naterial (P) P ₁ P ₂	Continued. Drying method (D) D ₁ D ₂ Mean D ₁ D ₂	8.55 17.35 12.95 10.37 15.86 13.11	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05	7.49 15.15 11.32 8.83 14.04 11.43
Plant naterial (P) P ₁	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2	8.55 17.35 12.95 10.37 15.86 13.11 12.03	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30	7.49 15.15 11.32 8.83 14.04 11.43 10.50
Plant naterial (P) P ₁ P ₂	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36	ages S1 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23
Plant naterial (P) P ₁ P ₂	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36	r(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94
Plant naterial (P) P ₁ P ₂	Continued. Drying method (D) D_1 D_2 Mean D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For corr	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 mparing pre-	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D)	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For cor 10.08 15.55 12.81	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 mparing pre- 9.16 15.47 12.31	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_1 D_2 Mean	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For cor 10.08 15.55	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 mparing pre- 9.16 15.47	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_1 D_2 Mean D_3 D_2 Mean	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For cor 10.08 15.55 12.81	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 mparing pre- 9.16 15.47 12.31 CD a	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35 CD at 5% 0.201	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For cor 10.08 15.55 12.81 SEm	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 nparing pre- 9.16 15.47 12.31 CD a 0.2	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00 t 5%	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89 SEm	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35 CD at 5%	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_1 D_2 Mean D_3 D_2 Mean D_3	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.07 16.48 14.32 For con 10.08 15.55 12.81 SEm 0.088	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 nparing pre- 9.16 15.47 12.31 CD a 0. 0.	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00 t 5% 262	s (S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89 SEm 0.068	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35 CD at 5% 0.201	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_3 D_2 Mean D_3 D_2 Mean D_3 D_2 D_3 D	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For con 10.08 15.55 12.81 SEm 0.088 0.088	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 nparing pre- 9.16 15.47 12.31 CD a 0. 0. 0.	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00 tt 5% 262	S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89 SEm 0.068 0.068	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35 CD at 5% 0.201 0.201	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 D_3	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For con 10.08 15.55 12.81 SEm 0.088 0.088 0.072	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 nparing pre- 9.16 15.47 12.31 CD a 0. 0. 0. 0. 0.	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00 t 5% 262 214	r(S) ages S1 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89 SEm 0.068 0.055	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35 CD at 5% 0.201 0.201 0.164	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14
Plant naterial (P) P ₁ P ₂ P ₃	Continued. Drying method (D) D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_1 D_2 Mean D_2 Mean D_1 D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_2 Mean D_3 D_2 Mean D_3 D_2 Mean D_3 D_2 Mean D_3	8.55 17.35 12.95 10.37 15.86 13.11 12.03 19.17 15.60 10.32 17.46 13.89	S ₂ 8.19 15.90 12.05 9.88 14.28 12.08 12.17 16.48 14.32 For cor 10.08 15.55 12.81 SEm 0.088 0.072 0.153	S ₃ 8.38 15.22 11.80 8.87 15.09 11.98 10.22 16.09 13.15 nparing pre- 9.16 15.47 12.31 CD a 0. 0. 0. 0. 0. 0. 0.	Pretreatment Days of stor Mean 8.37 16.16 12.27 9.70 15.08 12.39 11.47 17.24 14.36 treatment (S) a 9.85 16.16 13.00 t 5% 262 214 455	(S) ages S ₁ 7.65 16.26 11.95 9.41 14.79 12.10 11.01 18.26 14.63 nd drying meth 9.36 16.43 12.89 SEm 0.068 0.068 0.055 0.117	S ₂ 7.38 15.03 11.21 8.99 13.32 11.15 11.18 15.32 13.25 od (D) 9.18 14.56	S ₃ 7.44 14.18 10.81 8.09 14.01 11.05 9.30 15.11 12.20 8.27 14.43 11.35 CD at 5% 0.201 0.201 0.201 0.164 0.349	7.49 15.15 11.32 8.83 14.04 11.43 10.50 16.23 13.36 8.94 15.14

Table 3. Effect of pre-treatments, plant material and drying methods on Beta-carotene (mg 100 g⁻¹) of drumstick leaf and shoot pow-der. P₁: Terminal young shoot, P₂: Mature leaf with petiole and rachis, P₃: Mature leaf without petiole, rachis with rachilla and leafletsS₁: Water blanching, S₂: Water blanching + KMS 0.5 %, S₃: Without blanching (control), D₁: Sun drying, D₂: Mechanical drier (EZIDRI).

Table 3. Continued.

Plant material (P)	Drying me (D)	ethod					Pretrea Days of	atment (storages	/				
			12	20		150				180			
		\mathbf{S}_1	S_2	\mathbf{S}_3	Mean	\mathbf{S}_1	\mathbf{S}_2	S_3	Mean	\mathbf{S}_1	\mathbf{S}_2	S_3	Mean
	D	6.92	6.64	6.93	6.83	5.95	5.88	6.20	6.01	5.20	5.19	5.23	5.17
P ₁	D,	15.34	14.01	13.28	14.21	14.53	13.02	12.40	13.32	13.66	12.03	11.21	12.40
1	Mean	11.13	10.33	10.10	10.52	9.89	9.45	9.30	9.66	9.88	8.61	8.22	8.75
	D_1	8.55	8.14	7.34	8.01	7.82	7.63	6.69	7.38	6.93	6.85	5.76	6.51
P_2	D,	13.72	12.36	13.06	13.14	12.66	11.40	11.94	12.00	11.85	10.40	10.88	11.14
2	Mean	11.13	10.25	10.20	10.54	10.24	9.51	9.37	9.69	9.19	8.47	8.32	8.78
	D_1	10.13	10.35	8.47	9.65	9.34	9.45	7.70	8.83	8.36	8.57	6.76	7.89
P ₃	D,	17.41	14.18	14.21	15.27	16.45	13.38	13.35	14.39	15.44	13.24	12.51	13.73
3		13.77	12.27	11.34	12.46	12.89	11.42	10.52	11.61	11.90	10.90	9.63	10.8
			For	compar	ing pre-ti	reatment	(S) and d	rying m	ethod (D)				
D).	8.53	8.38	7.58	8.16	8.04	7.58	6.83	7.48	7.09	6.77	5.88	6.58
D		15.49	13.52	13.52	14.17	14.54	12.60	12.56	13.24	13.55	11.89	11.63	12.3
Me		12.01	10.95	10.55	11.17	11.29	10.09	9.70	10.36	10.32	9.33	8.76	9.47
Comparing	g means	SEn	n	CD a	ıt 5%	SE	m	CD at	5%	SEi	n	CD at 5%	
Р		0.06	8	0.20)3	0.0	083	0.24	15	0.1	07	0.318	
S		0.06	8	0.20)3	0.0	083	0.24	15	0.1	07	0.318	
D		0.05	6	0.16	5	0.0	067	0.20	00	0.0	88	0.260	
P x S		0.11	8	0.35	51	0.	143	0.42	25	0.13	86	0.552	
S x D)	0.09	6	0.28	37	0.	117	0.34	7	0.1	52	0.450	
P x D)	0.09	6	0.28	37	0.	117	0.34	7	0.1	52	0.450	
P x S x	D	0.16	7	0.49	6	0.2	202	0.60	00	0.2	63	0.780	

terial, pre-treatment and drying method, the highest chlorophyll content 159.91 mg 100 g⁻¹(initial day of storage) to 120.33 mg 100 g⁻¹ (180 days of storage) recorded in the treatment combination of un-blanched mature leaf without petiole, rachis with rachilla and leaflets with mechanical drier ($P_3S_3D_2$), whereas the lowest chlorophyll content 112.64 mg 100 g⁻¹ (initial day of storage) to 74.32 mg 100 g⁻¹ (180 days of storage) recorded in the treatment combination of water blanched sun dried mature leaf with petiole

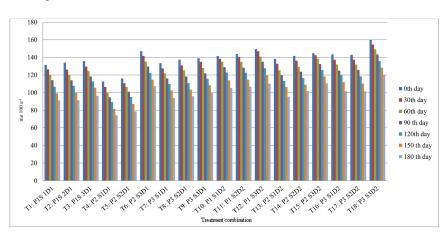


Fig. 1. Effect of pre-treatments, plant material and drying methods onchlorophyll content (mg 100 g-1) of drumstick leaves and shoot.

and rachis $(P_2S_1D_1)$.

During drying and pre-treatment, the chlorophyll content molecules were degraded to pyropheophytin and pheophytin. Therefore, at higher temperatures greenness reduced. Thus, visually, dark green color of the leaf turned into dull green yellow. Similar observations were reported by Ali *et al.* (2014).

Kaushal *et al.* (2013) reported that blanching leads to the loss of chlorophyll content from colocasia, but the use of EDTA, magnesium oxide will help in retention of chlorophyll during the blanching.

β -carotene content (mg 100 g⁻¹)

The mean β -carotene content (mg 100 g⁻¹) steadily decreased from 14.84 mg 100 g⁻¹ on the initial day of storage to 9.47 mg 100 g⁻¹ at 180 days of storage (Tables 2 and 3) (Fig. 1). The water blanched drumstick leaf and shoot (S1) recorded the highest β -carotene content 15.85 mg 100 g⁻¹(initial day of storage) to10.32 mg 100 g⁻¹ (180 days of storage) and the lowest β -carotene content 4.10 mg 100 g⁻¹ (initial day of storage) to 8.76 mg 100 g⁻¹ (180 days of storage) recorded in combination of un-blanched drumstick leaf and shoot (S₂). Among the plant material, the highest β -carotene content 16.21 mg 100 g⁻¹ (initial day of storage) to $10.81 \text{ mg} 100 \text{ g}^{-1}(180 \text{ days})$ of storage) recorded in the mature leaf without petiole, rachis with rachilla and leaflets (P_2) as compared to mature leaf with petiole and rachis (P_2) 14.17 mg 100 g^{-1} (initial day of storage) to 8.78 mg 100 g^{-1} (180 days of storage) and terminal young shoot (P₁) 14.15 mg 100 g^{-1} (initial day of storage) to 8.75 mg 100 g^{-1} (180 days of storage). The mechanical drying method (D_2) resulted in the highest β -carotene content (18.05 mg 100 g^{-1} (initial day of storage) to $12.36 \text{ mg} 100 \text{ g}^{-1}$ (180 days of storage) as compared to sun drying method (D_1) (11.63 mg 100 g⁻¹ (initial day of storage) to 6.58 mg 100 g⁻¹ (180 days of storage).

The interaction between pre-treatment and drying methods, the highest β -carotene content 19.46 mg 100 g⁻¹(initial day of storage) to 13.55 mg 100 g⁻¹(180 days of storage) recorded in water blanched mechanical dried samples (S₁D₂) and the lowest β -carotene content 10.99 mg 100 g⁻¹(initial day of storage) to

5.88 mg 100 g⁻¹ (180 days of storage) recorded in un-blanched and sun dried samples (S_3D_1).The effect of interaction between plant material, pre-treatment and drying method, maximum β -carotene content 21.21 mg 100 g⁻¹ (initial day of storage) to 15.44 mg 100 g⁻¹(180 days of storage) recorded in the treatment combination of water blanched mature leaf without petiole, rachis with rachilla and leaflets in mechanical drier ($P_3S_1D_2$), whereas minimum β -carotene content 9.84 mg 100 g⁻¹ (initial day of storage) to 5.19 mg 100 g⁻¹(180 days of storage) recorded in the treatment combination of water blanching with 0.5% KMS and sun dried terminal young shoot ($P_1S_2D_1$).

Beta-carotene content in blanched leaf significantly higher it might be because β -carotene content heat stable and therefore not destroyed by most of blanching methods with short time period. Similar results were also reported by Titi *et al.* (2013). Olabode *et al.* (2015) reported that as the temperature increased, there significant reduction in the β -carotene scomposition of moringa leaves. Similar results were also reported by Derossi *et al.* (2011).

CONCLUSION

Water blanched sample recorded the highest beta-carotene content and un-blanched plant materials (S₃) recorded the highest ascorbic acid and chlorophyll content. Mature leaf without petiole, rachis with rachilla and leaflets (P₃) recorded the best among the plant material for retention of chlorophyll, β -carotene and ascorbic acid observed maximum in mature leaf with petiole and rachis. Mechanical drier was the best for retaining of the all above nutrients. In interaction un-blanched mechanical dried samples (S₃D₂) recorded the best in retaining ascorbic acid, chlorophyll content and β -carotene content observed maximum in water blanched mechanical (S₁D₂) dried drumstick leaves and shoot during storage period.

REFERENCES

- Ali MA, Yusof YA, Chin NL, Ibrahim MN, Basra SMA (2014) Drying kinetics and color analysis of *Moringao leifera leaves*. *Agric Sci Proc* 2 (2) : 394–400.
- Derossi A, Severini C, Cassi D (2011) Mass transfer mechanisms during dehydration of vegetable food. Trad Innov Approach, pp 305-354.

- Kaushal M, Sharma KD, Surekha A (2013) Effect of blanching on nutrional quality of dehydrated colocasia, *Colocasiaescu-lenta* (L.) Schott leaves. *Ind J Natural Prod Resour* 4 (2): 161-164.
- Olabode Z, Akanbi CT, Olunlade B, Adeola AA (2015) Effect of drying temperature on the nutrients of Moringa *(Moringa oleifera)* leaves and sensory attributrs of dried leaves infusion. *Direct Res J Agric food Sci* 3 (5): 117-122.
- Panse VS, Sukhatme PV (1985) Statistical methods for agricultural workers. Ind Council Agric Res, pp 70-72.
- Patel PB, Patel PV, Joshi SB, Pandya DD, Chaudhary MK, Patel BG, Joshi AB (2016) Effect of different blanching treatments on ascorbic acid retention in green leafy vegetables. *Int J Agric Sci* 8 (51) : 2353-2355.
- Ranganna S (1986) Handbook of analysis and quality control for fruit and vegetable products. Tata Mc. Graw hill Publishing Company Limited, New Delhi.
- Singh Y, Jale R, Prasad KK, Sharma RK, Prasad K (2012) Moringaoleifera A Miracle Tree, Proceedings, International Seminar on Renewable Energy for Institutions and Communities in Urban and Rural Settings, pp 73-81.
- TitiMutiara K, Harijono, Teti E, Endang S (2013) Effect of Blanching Treatments against Protein Content and Amino Acid Drumstick Leaves (Moringa oleifera). J Food Res 2 (1): 101-108.
- Udhal Singh, Sagar VR, Behera TK, Suresh KP (2006) Effect of drying condition on quality of dehydrated selected Sleafy vegetables. *J Food SciTechnol* 43 (6): 579–582.