Environment and Ecology 40 (4D) : 2777—2786, October—December 2022 ISSN 0970-0420

Genetic Variability, Correlation and Path Coefficient Study of Indigenous Rice (*Oryza sativa* L.) Accessions for Different Yield and Quality Contributing Traits

Naina Panika, Yogendra Singh, S. K. Singh, Shivangi Rahangdale, R. S. Shukla

Received 23 August 2022, Accepted 11 October 2022, Published on 14 December 2022

ABSTRACT

In this study, eighty indigenous rice accessions were evaluated for twenty-nine quantitative and quality traits planted in Randomized Complete Block Design with three replications. The experiment was conducted during kharif season of 2020 at Seed Breeding Farm, Department of Plant Breeding and Genetics, College of Agriculture, JNKVV, Jabalpur (MP), India. Observations were recorded for yield and quality traits to study the genetic variability parameters, correlation coefficient and path coefficient for yield and its attributing traits. The values of PCV for all the traits were found to be more than GCV and very small difference was present in between GCV and PCV revealing little influence of environment for their expression. High heritability coupled with high genetic advance was recorded for traits viz., days of

Naina Panika, Yogendra Singh*, S. K. Singh, Shivangi Rahangdale, R. S. Shukla

Department of Plant Breeding and Genetics,

Email: yogendrasinghbt@gmail.com *Corresponding author

50% flowering, flag leaf length, flag leaf width, stem length, panicle length, no. of tillers per plant, no. of productive tillers per plant, panicle weight per plant, stem thickness, no. of spikelets per panicle, fertile spikelets per panicle, sterile spikelets per panicle, thousand grain weight, plant height, plant weight, biological yield per plant, grain length, grain breadth, head rice recovery percentage and spikelet density. Based on the results from correlation and path coefficient analysis, it may be concluded that the character no. of spikelets per panicle exhibited maximum positive direct effect and positive significant association with grain yield followed by panicle weight per plant, panicle index, no. of tillers per plant, plant height, biological yield per plant and head rice recovery should be given emphasis for further selection in rice improvement program.

Keywords Genetic variability, Heritability, Genetic advance, Correlation and path coefficient analysis.

INTRODUCTION

Rice (*Oryza sativa* L.) belong to the genus *Oryza* and has two cultivated and twenty-two wild species. In the wild spices, 9 species are tetraploid (2n=48) and remaining 13 wild species are diploid and two cultivated species are diploid (2n=24). The cultivated species are *Oryza sativa* (Asian cultivated rice) and *Oryza glaberrima* (African cultivated rice). Asian cultivated rice is grown world wise while African cultivated rice *Oryza glaberrima* is grown on a limited scale in West Africa. Rice is consumed by nine out of

Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, MP, India

ten people on the planet, especially by the impoverished, where it accounts for 50-80% of daily calorie intake and is the predominant protein source. More than 90% of the world's rice is grown and consumed in Asia, which also happens to be home to 60% of the world's people.

Rice quality has attracted significant attention and it has become the most important target in rice improvement and the analysis was conducted at Rice Quality Laboratory at Indonesia Center for Rice Research (ICRR), Sukamandi. The data were analyzed using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test (DMRT) if differences were found (Purwaningsih and Indrasari 2019). Characteristics of quality rice mainly related to aroma, milling efficiency, grain size, shape, grain appearance and cooking characteristics, palatability, flavor and nutritional values. The Indian indigenous aromatic rice are small and medium grain types, mostly cultivated for local consumption. Few of the small and medium grained aromatic rice possess excellent aroma and other quality traits viz., kernel elongation after cooking, taste. which could be excellent source for improving quality in high yielding varieties. Amylose content strongly influences the cooking and eating characteristics of rice.

Genetic parameters such as genetic coefficient of variation (GCV), phenotypic coefficient of variance (PCV), heritability, genetic advance are biometric tools that are useful for measuring genetic variability. Data on coefficient of variety is helpful in estimating the scope of changeability present in the characters. Similarly, heritability is the measures of transmission of characters from generation to generation. The information about heritability along with genetic advance can provide a glaring picture for selection of desired traits. The relative contribution of individual traits may be accomplished by correlation studies, Path coefficient analysis utilized to find out the direct and indirect causes of association governing the traits.

MATERIALS AND METHODS

This study was carried out at Seed Breeding Farm under Rice Improvement Project, Department of Plant Breeding and Genetics, College of Agriculture,

JNKVV, Jabalpur (MP). The experimental area occupied was quite uniform in respect of topography and fertility, situated at 23.900 N latitude and 79.580 E longitudes at an altitude of 411.87 m over the mean ocean level. The experimental material comprised of 80 Indigenous rice accessions collected from different districts of Madhya Pradesh. The research material was obtained from Rice Improvement Project, Department of Plant Breeding and Genetics, College of Agriculture, JNKVV, Jabalpur. These lines were planted in Randomized Complete Block Design with three replications. To record morphological observations, five competitive plants were randomly selected and tagged each plot in three replications. Mean of large, medium and smallest panicle from each of the five randomly selected plants were used to record the observations of panicle traits. All the agro-morphological characters and their states given as per National guidelines for the conduct of tests for distinctness, uniformity and stability (Shobha et al. 2006, DRR) were recorded at different stages of crop growth period.

RESULTS AND DISCUSSION

Genetic variability parameters

In this study, the mean sum of squares owing to genotypes was highly significant for all measures, indicating that there was substantial variation among genotypes for these qualities, according to the analysis of variance results. Panicle index had the most variation, while flag leaf width had the lowest. The magnitude of GCV and PCV were recorded high for traits such as sterile spikelets per panicle, flag leaf width, panicle weight per plant, length and breadth ratio of decorticated grain, no. of spikelets per panicle, spikelet density, stem length, fertile spikelets per panicle, stem thickness, thousand grain weight, grain yield per plant, biological yield per plant, plant height, plant weight, decorticated grain breath and no. of productive tillers per plant (Table 1). Therefore, these characters should be considered during selection of desired rice lines in crop improvement program. This finding was in partial consonance with the findings of Bharath et al. (2018), Kencharahut et al. (2018), Pragnya et al. (2018), Kujur et al. (2019) and Rahangdale et al. (2019). PCV for all the traits were

Sl. No.	Traits	Mean	Range	Range Coefficient of variation		PCV	h ² (bs) %	Genetic advance as 5% of mean
			WIIII	IVIAX	(%)	(%)		
1	DTF	70.00	118.00	92.33	14.36	14.45	98.71	29.39
2	FLL	21.40	51.36	31.48	16.70	17.25	93.68	33.30
3	FLW	0.523	5.066	0.97	50.65	50.99	98.69	103.66
4	SL	53.13	135.40	91.97	22.83	22.89	99.53	46.93
5	PL	14.03	28.73	20.66	12.34	14.03	77.42	22.37
6	TTPP	5.866	12.93	9.98	16.76	18.24	84.43	31.72
7	PTPP	4.773	11.80	8.73	18.32	20.09	83.15	34.41
8	PWPP	3.933	26.66	16.24	29.09	29.39	97.99	59.32
9	ST	3.366	9.40	6.108	21.90	23.04	90.40	42.91
10	TSPP	94.86	257.60	152.62	23.74	24.65	92.77	47.11
11	FSPP	73.20	209.66	124.90	22.61	23.75	90.64	44.35
12	SSPP	7.80	69.86	27.715	50.95	53.07	92.17	100.76
13	TGW	10.70	32.50	22.07	21.90	22.02	98.94	44.88
14	PH	73.23	166.50	116.43	19.28	19.61	96.65	39.05
15	PW	14.16	36.60	22.81	19.26	23.21	68.88	32.94
16	BYPP	23.00	58.73	39.06	20.01	21.54	86.31	38.29
17	SF	63.44	93.44	82.20	7.56	8.23	84.33	14.30
18	HI	29.20	66.70	50.61	11.13	22.24	25.05	11.47
19	PI	54.98	308.10	127.36	21.93	31.58	48.23	31.37
20	GL	5.36	11.82	7.3260	14.40	14.51	98.46	29.44
21	GB	1.663	3.76	2.617	16.42	16.77	95.94	33.14
22	DGL	3.73	8.33	5.5471	14.32	14.36	99.41	29.42
23	DGB	1.167	2.813	2.0169	18.73	19.07	96.49	37.91
24	LBR	1.54	5.396	2.855	25.16	25.52	97.17	51.09
25	H (%)	74.40	85.20	79.35	2.64	2.86	85.38	5.035
26	M (%)	46.86	82.33	76.62	5.49	5.69	93.10	10.93
27	HRR	36.21	79.306	64.50	12.64	12.88	96.28	25.56
28	SD	4.52	13.480	7.45	22.92	24.65	86.41	43.89
29	GYPP	9.866	29.46	19.82	20.72	25.69	65.06	34.44

Table 1. Parameters of genetic variability for yield, yield attributing and quality traits in rice genotypes.

Notations: DTF (days to flowering), DTM (days to maturity), FLL (flag leaf length), FLW (flag leaf width), ST (stem thickness), SL (stem length), PH (plant height), NOT (number of tillers per plant), NOPT (number of productive tillers per plant), PL (panicle length), BYPP (biological yield per plant), PWPP (panicle weight per plant), NSPP (number of spikelet per panicle), FSPP (fertile spikelet per panicle), SF (spikelet fertility), SD (spikelet density), TGW (thousand grain weight), PI (panicle weight), HI (harvest index), GL (grain length), GB (grain breadth), DGL (decorticated grain length), DGB (decorticated grain breadth), DLBR (decorticated length breadth ratio), H% (hulling %), M% (milling %), HRR (head rice recovery), GYPP (grain yield per plant).

recorded more than GCV and very small difference was present in between GCV and PCV, revealing very little influence of environment for their expression.

High heritability coupled with high genetic advance was recorded for traits viz., days of 50 % flowering, flag leaf length, flag leaf width, stem length, panicle length, no. of tillers per plant, no. of productive tillers per plant, panicle weight per plant, stem thickness, no. of spikelets per panicle, fertile spikelets per panicle, sterile spikelets per panicle, thousand grain weight, plant height, plant weight, biological yield per plant, grain length, grain breadth, decorticated grain length, decorticated grain breadth, length and breadth ratio of decorticated grain, head rice recovery percentage and spikelet density (Table 1). It indicated that direct selection for these traits might be effective since the heritability is most likely due to additive gene effect. This result was in partial consonance with the finding of Srujana *et al.* (2017), Bagudam *et al.* (2018), Lal *et al.* (2018), Singh *et al.* (2018), Kumar *et al.* (2018), Kujur *et al.* (2019), Dey

Correlation coefficient analysis

Correlation analysis reveals the interrelationships between various independent qualities and dependent traits such as grain yield/plant. In the current study, genotypic correlation coefficients were higher in magnitude in the same direction than phenotypic correlation coefficients, indicating that there is a strong inherent association between each pair of characters, which could be due to the environment's masking or modifying effect. Grain yield/plant exhibited positive and significant association between flag leaf length, flag leaf width, stem length, stem thickness, plant height, no. of productive tillers per plant, panicle length, no. of spikelets per panicle, fertile spikelets per panicle, fertile spikelets per panicle, spikelet density, grain length, decorticated grain length, biological yield per plant, panicle weight per plant (Tables 2 a - b). These traits should be given empha-

Table 2 (a). Estimates of phenotypic correlation coefficient for various yield and quality attributing traits.

Char	DTF	FLL	FLW	SL	PL	TTPP	PTPP	PWPP	
DTF	1.0000	0.2754	0.2007	0.5246	0.4366	-0.1561	-0.1535	0.2861	
FLL		1.0000	0.1762	0.5168	0.3658	-0.1822	-0.1473	0.4096	
FLW			1.0000	0.2492	0.1098	0.0444	0.0579	0.0671	
SL				1.0000	0.5950	-0.1793	-0.1593	0.1579	
PL					1.0000	-0.1955	-0.2070	0.3414	
TTPP						1.0000	0.9822	0.0072	
PTPP							1.0000	0.0328	
PWPP								1.0000	
ST									
TSPP									
FSPP									
SSPP									
TGW									
PH									
PW									
BYPP									
SF									
HI									
PI									
GL									
GB									
DGL									
DGB									
LBR									
H%									
M%									
HRR%									
SD									
GYPP	0.3415	0.4858	0.0255	0.1538	0.3106	0.0447	0.0584	0.9029	
Table 2 (a). Continued.								
Char	ST	TSPP	FSPP	SSPP	TGW	PH	PW		
DTF	0.4287	0.1515	0.0966	0.1957	0.0090	0.5302	0.5024		
FLL	0.3656	0.4002	0.3346	0.3577	0.0360	0.5133	0.4698		
FLW	0.1508	0.0634	0.1234	-0.0841	0.1803	0.2355	0.1428		
SL	0.4279	0.2872	0.2052	0.3266	-0.0451	0.9939	0.5787		
PL	0.4708	0.3535	0.3178	0.2715	-0.1067	0.6915	0.4079		
TTPP	-0.3012	-0.0474	-0.0411	-0.0396	0.0065	-0.1903	0.0322		
PTPP	-0.2978	-0.0387	-0.0604	0.0215	0.0121	-0.1751	0.0331		
PWPP	0.3363	0.3124	0.3206	0.1606	-0.0929	0.1844	0.4675		
ST	1.0000	0.3904	0.3526	0.2968	-0.1134	0.4586	0.3611		

Char	ST	TSPP	FSPP	SSPP	TGW	PH	PW	
TSPP		1.0000	0.9338	0.6986	-0.5291	0.3145	0.4467	
FSPP			1.0000	0.3964	-0.4935	0.2307	0.3714	
SSPP				1.0000	-0.3709	0.3457	0.4036	
TGW					1.0000	-0.0587	-0.1152	
PH						1.0000	0.5757	
PW							1.0000	
BYPP								
SF								
HI								
PI								
GL								
GB								
DGL								
DGB								
LBR								
H%								
M%								
HRR%								
SD								
GYPP	0.2434	0.2233	0.2113	0.1504	0.0048	0.1723	0.5551	

Table 2 (a). Continued.

sis for further selection since strong association of these traits with grain yield/plant was recorded. This

result was in confirmation with Jambulkar and Bose (2014), Bhati *et al.* (2015), Konate *et al.* (2016), Pal

Table 2 (b). Estimates of phenotypic correlation coefficient for various yield and quality attributing traits (Cont.).

Char	BYPP	SF	HI	PI	GL	GB	DGL
DTF	0.4556	-0.1377	-0.1492	-0.0652	0.1079	-0.1143	0.1540
FLL	0.5119	-0.1531	0.0104	-0.1385	0.0341	0.0814	0.2035
FLW	0.1209	0.1493	-0.1845	-0.1083	0.0105	0.0354	0.0423
SL	0.4210	-0.2289	-0.4038	-0.0985	-0.1571	-0.0148	-0.0515
PL	0.4359	-0.1032	-0.2501	-0.2330	-0.0686	-0.1904	-0.0179
TTPP	0.0225	-0.0229	0.0937	-0.0257	-0.0882	-0.0472	-0.0784
PTPP	0.0384	-0.0933	0.0948	-0.0370	-0.0703	-0.0495	-0.0335
PWPP	0.8676	0.0173	0.0717	-0.7072	0.2589	-0.1101	0.2350
ST	0.4065	-0.1224	-0.2034	-0.2283	-0.0698	-0.1712	-0.0434
TSPP	0.4402	-0.2615	-0.3265	-0.2278	-0.1229	-0.2317	-0.0824
FSPP	0.4027	0.0925	-0.2871	-0.3030	-0.1279	-0.1937	-0.1085
SSPP	0.3241	-0.8563	-0.2637	0.0215	-0.0597	-0.2071	0.0054
TGW	-0.1209	0.1818	0.1897	0.0814	0.2347	0.4114	0.2866
PH	0.4353	-0.2328	-0.3938	-0.1230	-0.1421	-0.0423	-0.0417
PW	0.8451	-0.2117	-0.3706	0.0251	0.1006	0.0113	0.1274
BYPP	1.0000	-0.1086	-0.1650	-0.4135	0.2131	-0.0602	0.2137
SF		1.0000	0.1608	-0.1856	0.0043	0.1538	-0.0604
HI			1.0000	0.0963	0.1011	0.0875	0.1666
PI				1.0000	-0.0766	0.0905	0.0264
GL					1.0000	0.1444	0.8650
GB						1.0000	0.1624
DGL							1.0000
DGB							
LBR							
H%							
M%							
HHR%							
SD							
GYPP	0.8582	-0.0172	0.3530	-0.3855	0.2835	-0.0482	0.3191

Char	DGB	LBR	H%	M%	HRR%	SD%
DTF	-0.0848	0.1337	-0.0467	-0.0853	-0.1115	-0.0909
FLL	0.0541	0.0281	-0.1665	-0.1003	-0.0993	0.2146
FLW	0.0942	-0.0676	0.0399	0.0241	0.0012	0.0066
SL	-0.0448	-0.0671	0.0885	0.0680	0.0692	-0.0536
PL	-0.1899	0.1378	0.0589	-0.0189	0.1066	-0.1851
TTPP	-0.0700	0.0328	-0.0345	-0.1670	-0.1201	0.0761
PTPP	-0.0749	0.0615	0.0105	-0.1411	-0.0628	0.0880
PWPP	-0.1866	0.3366	0.0546	0.0471	-0.0319	0.1632
ST	-0.1879	0.1322	-0.0805	-0.0586	0.0061	0.1352
TSPP	-0.2743	0.2306	-0.1048	0.1045	0.1308	0.8470
FSPP	-0.2624	0.2095	-0.1268	0.0980	0.0997	0.8110
SSPP	-0.1791	0.1728	-0.0153	0.0721	0.1364	0.5515
TGW	0.3976	-0.2229	0.0988	-0.1322	-0.2388	-0.5103
PH	-0.0711	-0.0326	0.0859	0.0680	0.1008	-0.0796
PW	-0.0602	0.1192	0.0245	-0.1441	-0.0866	0.2278
BYPP	-0.1467	0.2706	0.0468	-0.0525	-0.0680	0.2268
SF	0.0825	-0.1100	-0.0648	-0.0511	-0.1299	-0.1873
HI	0.0940	0.0479	-0.0455	-0.0939	-0.2396	-0.1578
PI	0.1362	-0.1180	-0.0549	-0.1232	-0.1281	-0.1143
GL	0.1357	0.4409	0.0839	-0.0200	-0.0485	-0.0872
GB	0.7954	-0.5608	0.1079	0.0456	-0.2289	-0.1541
DGL	0.1179	0.5111	0.0925	-0.0179	0.0257	-0.0719
DGB	1.0000	-0.7613	-0.0126	-0.0594	-0.2432	-0.1915
LBR		1.0000	0.1177	0.0730	0.2464	0.1803
Н%			1.0000	0.5199	0.4161	-0.1405
М%				1.0000	0.6276	0.1115
HHR%					1.0000	0.0640
SD						1.0000
GYPP	-0.1121	0.3169	0.0660	-0.0710	-0.1451	0.0975

Table	2	(b).	Continued.
-------	---	------	------------

et al. (2016), Karande *et al.* (2017), Archana *et al.* (2018), Meena *et al.* (2018), Mukesh *et al.* (2018), Pratap *et al.* (2018), Nanda *et al.* (2019), Rahangdale *et al.* (2019) and Sahu *et al.* (2019) for different traits.

Path coefficient analysis

Path analysis results revealed that the highest positive direct effect on seed production per plant was observed for no. spikelets per panicle exhibited maximum positive direct effect followed by panicle weight per plant, panicle index, no. of tillers per plant, plant height, biological yield per plant, head rice recovery, grain length, hulling percentage, grain breath, days of 50 % flowering, thousand grain weight, flag leaf width (Tables 3 a - b). This result was in consonance with findings of Sharma (2014), Ekka *et al.* (2015), Guru *et al.* (2017), Gour *et al.* (2017), Mukesh *et al.* (2018), Venkatesan (2017) and Singh *et al.* (2019).

Table 3 (a). Genotypic path analysis showing direct and indirect effect of various components on grain yield/plant.

Char	DTF	FLL	FLW	SL	PL	TTPP	PTPP
DTF	0.5044	0.1389	0.1012	0.2646	0.2202	-0.0787	-0.0774
FLL	-0.1231	-0.4470	-0.0788	-0.2310	-0.1635	0.0814	0.0658
FLW	0.0050	0.0044	0.0251	0.0062	0.0028	0.0011	0.0015
SL	-0.5068	-0.4992	-0.2407	-0.9660	-0.5748	0.1732	0.1539
PL	-2.1871	-1.8323	-0.5503	-2.9806	-5.0096	0.9791	1.0371
TTPP	-0.7166	-0.8364	0.2036	-0.8231	-0.8971	4.5899	4.5082
PTPP	0.6258	0.6005	-0.2362	0.6494	0.8440	-4.0041	-4.0768
PWPP	1.5282	2.1880	0.3584	0.8436	1.8235	0.0383	0.1750
ST	-0.1572	-0.1340	-0.0553	-0.1569	-0.1726	0.1104	0.1092

	Table	3	(a).	Continu	ied.
--	-------	---	------	---------	------

Char	DTF	FLL	FLW	SL	PL	TTPP	PTPP
TSPP	1.7329	4.5764	0.7253	3.2842	4.0428	-0.5427	-0.4422
FSPP	-0.1785	-0.6185	-0.2281	-0.3793	-0.5875	0.0760	0.1116
SSPP	-0.3655	-0.6681	0.1570	-0.6100	-0.5071	0.0739	-0.0401
TGW	0.0020	0.0080	0.0400	-0.0100	-0.0236	0.0014	0.0027
PH	1.8672	1.8075	0.8292	3.5000	2.4353	-0.6700	-0.6166
PW	-3.2114	-3.0027	-0.9128	-3.6991	-2.6074	-0.2059	-0.2116
BYPP	1.2953	1.4554	0.3437	1.1969	1.2392	0.0638	0.1093
SF	0.0181	0.0201	-0.0196	0.0301	0.0136	0.0030	0.0123
HI	0.1102	-0.0077	0.1362	0.2981	0.1846	-0.0692	-0.0700
PI	-0.3315	-0.7042	-0.5507	-0.5007	-1.1847	-0.1308	-0.1880
GL	0.1275	0.0403	0.0124	-0.1856	-0.0810	-0.1042	-0.0831
GB	-0.0670	0.0477	0.0207	-0.0087	-0.1115	-0.0276	-0.0290
DGL	-0.0116	-0.0154	-0.0032	0.0039	0.0014	0.0059	0.0025
DGB	0.1478	-0.0944	-0.1643	0.0780	0.3312	0.1220	0.1305
LBR	-0.3352	-0.0705	0.1695	0.1682	-0.3457	-0.0822	-0.1542
Н%	-0.0375	-0.1337	0.0320	0.0710	0.0473	-0.0277	0.0085
M%	0.1689	0.1987	-0.0478	-0.1348	0.0374	0.3308	0.2795
HRR%	-0.1546	-0.1376	0.0016	0.0959	0.1478	-0.1665	-0.0871
SD	0.5919	-1.3983	-0.0429	0.3493	1.2058	-0.4960	-0.5730
GYPP	0.3415	0.4858	0.0255	0.1538	0.3106	0.0447	0.0584
R square= 1.	.1556						
Residual effe	ect = (1 - 1.1556)						

Table 3 (a). Continued.

Char	PWPP	ST	TSPP	FSPP	SSPP	TGW	PH
DTF	0.1443	0.2162	0.0764	0.0487	0.0987	0.0045	0.2674
FLL	-0.1831	-0.1634	-0.1788	-0.1495	-0.1599	-0.0161	-0.2294
FLW	0.0017	0.0038	0.0016	0.0031	-0.0021	0.0045	0.0059
SL	-0.1526	-0.4134	-0.2774	-0.1982	-0.3155	0.0436	-0.9601
PL	-1.7101	-2.3587	-1.7709	-1.5921	-1.3603	0.5344	-3.4643
TTPP	0.0329	-1.3824	-0.2178	-0.1886	-0.1817	0.0298	-0.8733
PTPP	-0.1336	1.2142	0.1576	0.2461	-0.0876	-0.0493	0.7138
PWPP	5.3416	1.7965	1.6689	1.7125	0.8577	-0.4960	0.9851
ST	-0.1233	-0.3666	-0.1431	-0.1293	-0.1088	0.0416	-0.1681
TSPP	3.5732	4.4649	11.4368	10.6800	7.9898	-6.0515	3.5968
FSPP	-0.5927	-0.6518	-1.7264	-1.8487	-0.7329	0.9123	-0.4265
SSPP	-0.2999	-0.5542	-1.3047	-0.7404	-1.8676	0.6927	-0.6456
TGW	-0.0206	-0.0251	-0.1173	-0.1094	-0.0822	0.2217	-0.0130
PH	0.6495	1.6150	1.1075	0.8124	1.2173	-0.2067	3.5215
PW	-2.9880	-2.3082	-2.8553	-2.3738	-2.5801	0.7361	-3.6799
BYPP	2.4668	1.1557	1.2515	1.1450	0.9215	-0.3438	1.2377
SF	-0.0023	0.0161	0.0344	-0.0122	0.1126	-0.0239	0.0306
HI	-0.0530	0.1501	0.2410	0.2119	0.1947	-0.1401	0.2907
PI	-3.5956	-1.1606	-1.1581	-1.5406	0.1092	0.4137	-0.6256
GL	0.3059	-0.0825	-0.1453	-0.1511	-0.0705	0.2773	-0.1679
GB	-0.0645	-0.1003	-0.1357	-0.1135	-0.1213	0.2410	-0.0248
DGL	-0.0178	0.0033	0.0062	0.0082	-0.0004	-0.0217	0.0032
DGB	0.3253	0.3276	0.4783	0.4576	0.3122	-0.6933	0.1240
LBR	-0.8442	-0.3315	-0.5784	-0.5255	-0.4333	0.5591	0.0818
H%	0.0438	-0.0646	-0.0842	-0.1019	-0.0123	0.0794	0.0690
M%	-0.0933	0.1161	-0.2070	-0.1941	-0.1429	0.2619	-0.1348
HRR%	-0.0442	0.0085	0.1814	0.1383	0.1891	-0.3312	0.1398
SD	-1.0634	-0.8811	-5.5179	-5.2837	-3.5931	3.3245	0.5184
GYPP	0.9029	0.2434	0.2233	0.2113	0.1504	0.0048	0.1723

	PW	BYPP	SF	HI	PI	GL	GB
DTF	0.2534	0.2298	-0.0695	-0.0753	-0.0329	0.0544	-0.0577
FLL	-0.2100	-0.2288	0.0684	-0.0047	0.0619	-0.0152	-0.0364
FLW	0.0036	0.0030	0.0037	-0.0046	-0.0027	0.0003	0.0009
SL	-0.5590	-0.4067	0.2212	0.3901	0.0951	0.1518	0.0143
PL	-2.0435	-2.1835	0.5169	1.2528	1.1673	0.3436	0.9537
TTPP	0.1479	0.1031	-0.1051	0.4302	-0.1181	-0.4048	-0.2165
PTPP	-0.1350	-0.1567	0.3803	-0.3863	0.1507	0.2868	0.2019
PWPP	2.4970	4.6345	0.0923	0.3832	-3.7775	1.3830	-0.5878
ST	-0.1324	-0.1490	0.0449	0.0746	0.0837	0.0256	0.0627
TSPP	5.1089	5.0342	-2.9910	-3.7343	-2.6051	-1.4061	-2.6497
FSPP	-0.6866	-0.7446	-0.1710	0.5308	0.5602	0.2365	0.3582
SSPP	-0.7538	-0.6053	1.5992	0.4925	-0.0401	0.1115	0.3867
TGW	-0.0255	-0.0268	0.0403	0.0421	0.0180	0.0520	0.0912
PH	2.0273	1.5330	-0.8197	-1.3868	-0.4333	-0.5005	-0.1490
PW	-6.3920	-5.4021	1.3530	2.3686	-0.1606	-0.6430	-0.0721
BYPP	2.4028	2.8431	-0.3088	-0.4692	-1.1756	0.6060	-0.1712
SF	0.0278	0.0143	-0.1315	-0.0211	0.0244	-0.0006	-0.0202
HI	0.2735	0.1218	-0.1187	-0.7382	-0.0711	-0.0746	-0.0646
PI	0.1278	-2.1023	-0.9437	0.4894	5.0843	-0.3892	0.4603
GL	0.1189	0.2518	0.0051	0.1195	-0.0904	1.1815	0.1706
GB	0.0066	-0.0353	0.0901	0.0513	0.0530	0.0846	0.5858
DGL	-0.0096	-0.0162	0.0046	-0.0126	-0.0020	-0.0654	-0.0123
DGB	0.1049	0.2557	-0.1438	-0.1638	-0.2375	-0.2367	-1.3867
LBR	-0.2989	-0.6786	0.2759	-0.1202	0.2960	-1.1058	1.4066
Н%	0.0197	0.0376	-0.0521	-0.0365	-0.0441	0.0674	0.0867
M%	0.2854	0.1041	0.1013	0.1861	0.2441	0.0396	-0.0904
HRR%	-0.1201	-0.0943	-0.1801	-0.3323	-0.1777	-0.0673	-0.3174
SD	-1.4839	-1.4777	1.2205	1.0279	0.7446	0.5682	1.0042
GYPP	0.5551	0.8582	-0.0172	0.3532	-0.3855	0.2835	-0.0482
R square= 1.1	556						
Residual effect	t = (1 - 1.1556)						

Table 3 (b). Genotypic path analysis showing direct and indirect effect of various components on grain yield/plant (cont.).

Table 3 (b). Continued.

· · ·	,							
	DGL	DGB	LBR	Н%	M%	HRR	SD	
DTF	0.0777	-0.0428	0.0674	-0.0235	-0.0430	-0.0562	-0.0458	
FLL	-0.0910	-0.0242	-0.0126	0.0744	0.0448	0.0444	-0.0959	
FLW	0.0011	0.0024	-0.0017	0.0010	0.0006	0.0000	0.0002	
SL	0.0497	0.0432	0.0648	-0.0855	-0.0657	-0.0668	0.0518	
PL	0.0895	0.9515	-0.6905	-0.2952	0.0946	-0.5339	0.9272	
TTPP	-0.3600	-0.3211	0.1505	-0.1585	-0.7664	-0.5512	0.3494	
PTPP	0.1364	0.3052	-0.2506	-0.0430	0.5751	0.2560	-0.3586	
PWPP	1.2552	-0.9965	1.7979	0.2915	0.2516	-0.1703	0.8719	
ST	0.0159	0.0689	-0.0485	0.0295	0.0215	-0.0022	-0.0496	
TSPP	-0.9428	-3.1373	2.6375	-1.1986	1.1948	1.4964	9.6865	
FSPP	0.2005	0.4852	-0.3874	0.2344	-0.1811	-0.1843	-1.4993	
SSPP	-0.0101	0.3345	-0.3226	0.0286	-0.1347	-0.2547	-1.0300	
TGW	0.0635	0.0881	-0.0494	0.0219	-0.0293	-0.0529	-0.1131	
PH	-0.1470	-0.2505	-0.1148	0.3024	0.2396	0.3550	-0.2802	
PW	-0.8142	0.3846	-0.7617	-0.1568	0.9209	0.5538	-1.4559	
BYPP	0.6077	-0.4170	0.7692	0.1330	-0.1494	-0.1934	0.6448	
SF	0.0079	-0.0108	0.0145	0.0085	0.0067	0.0171	0.0246	
HI	-0.1230	-0.0694	-0.0354	0.0336	0.0693	0.1769	0.1165	
PI	0.1340	0.6925	-0.6000	-0.2792	-0.6265	-0.6515	-0.5811	
GL	1.0220	0.1604	0.5210	0.0991	-0.0236	-0.0573	-0.1030	

Table 3 (b). Continued.

	DGL	DGB	LBR	Н%	M%	HRR	SD	
GB	0.0951	0.4660	-0.3286	0.0632	0.0267	-0.1341	-0.0903	
DGL	-0.0756	-0.0089	-0.0386	-0.0070	0.0014	-0.0019	0.0054	
DGB	-0.2056	-1.7435	1.3272	0.0219	0.1036	0.4241	0.3339	
LBR	-1.2818	1.9092	-2.5080	-0.2953	-0.1830	-0.6180	-0.4521	
Н%	0.0743	-0.0101	0.0946	0.8032	0.4175	0.3342	-0.1128	
M%	0.0355	0.1178	-0.1445	-1.0299	-1.9811	-1.2433	-0.2208	
HRR%	0.0356	-0.3373	0.3416	0.5770	0.8702	1.3866	0.0888	
SD	0.4685	1.2476	-1.1745	0.9153	-0.7262	-0.4173	-6.5149	
GYPP	0.3191	-0.1121	0.3169	0.0660	-0.0710	-0.1451	0.0975	

Based on the results of correlation and path coefficient analysis, it is concluded that the characters no. spikelets per panicle exhibited maximum positive direct effect followed by panicle weight per plant, panicle index, no. of tillers per plant, plant height, biological yield per plant, head rice recovery, grain length, hulling percentage, grain breath, days of 50 % flowering, thousand grain weight and flag leaf width showing high positive direct effect and significant association with grain yield/plant. These traits should be given emphasis for further selection.

REFERENCES

- Archana RS, Rani MS, Vardhan KMV, Fareeda G (2018) Correlation and path coefficient analysis for grain yield, yield components and nutritional traits in rice (*Oryza sativa* L.). Int J Chem Stud 6(4): 189-195.
- Bagudam R, Eswari KB, Badri J, Rao PR (2018) Variability, heritability and genetic advance for yield and its component traits in NPT core set of rice (*Oryza sativa* L.). *Electron J Pl Breed* 9(4): 1545- 1551.
- Bharath MS, Mohan MM, Vanniarajan C, Gridhari V, Senthil N (2018) Genetic variability studies in ADT 43/Seeraga samba cross derivatives of rice (*Oryza sativa* L.). *Elect J Pl Breed* 9(4): 1450-1460.
- Bhati M, Babu GS, Rajput AS (2015) Genetic variability, correlation and path coefficient for grain yield and quantitative traits of elite rice (*Oryza sativa L.*) genotypes at Uttar Pradesh. *Elect J Pl Breed* 6(2): 586-591.
- Dey P, Sahu S, Kar RK (2019) Estimation of phenotypic coefficients of variation, genotypic coefficients of variation, heritability and genetic gain for yield and its components in rice landraces of Odisha. *Int J Agric Environ Biotechnol* 12(3): 181-185.
- Ekka RE, Sarawgi AK, Kanwar RR (2015) Genetic variability and inter- relationship analysis for various yield attributing and quality traits in traditional germplasm of rice (*Oryza sativa* L.). *Pl Arch* 15(2): 637-645.
- Gour L, Koutu GK, Singh SK, Patel DD, Shrivastava A, Singh Y (2017) Genetic variability, correlation and path analyses

for selection in elite breeding materials of rice (*Oryza sativa* L.) genotypes in Madhya Pradesh. *The Pharma Innov J* 6(11): 693-696.

- Gupta N, Singh SK, Dhote T (2020) Estimate of heritability and co-heritability for yield and quality traits in segregating rice populations. J Pharmacog Phytochem 9(3): 458-461.
- Karande SS, Thaware BL, Bhave SG, Devmore JP (2017) Genetic variability and character association studies on some exotic germplasm lines in *kharif* rice (*Oryza sativa* L.). *Adv Agric Res Technol J* 1(1): 110-114.
- Kencharahut M, Mohan YC, Shankar VG, Balram M (2018) Assessment of genetic variability in newly developed rice (*Oryza sativa* L.) hybrids. *Elect J Pl Breed* 9(3): 916-925.
- Konate AK, Zongo A, Kam H, Sanni A, Audebert A (2016) Genetic variability and correlation analysis of rice (*Oryza sativa* L.) inbred lines based on agro-morphological traits. *Afr J Agricult Res* 11(35): 3340-3346.
- Kujur MJ, Koutu GK, Krishnan RS, Singh Y (2019) Genetic variability of agro- morphological traits in traditional varieties of rice (*Oryza sativa* L.) from Madhya Pradesh, India. *Int J Chem Stud* 7(6): 1693-1700.
- Kumar S, Chauhan MP, Tomar A, Kasana RK (2018) Coefficient of variation (GCV and PCV), heritability and genetic advance analysis for yield contributing characters in rice (*Oryza sativa* L.). J Pharmacog Phytochem 7(3): 2161-2164.
- Lal R, Suresh BG, Verma A, Verma OP (2018) Genetic assessment of variability among local landraces of rice (*Oryza* sativa). The Pharma Innov J 7(10): 393-395.
- Meena S, Kumar R, Maurya V, Bisen P, Loitongbam B, Rathi SR, Upadhyay S, Singh PK (2018) Estimation of variability parameters, correlation and path coefficient for yield and yield associated traits in rice (*Oryza sativa* L.). Int J Agric Environ Biotechnol 867-873.
- Mukesh M, Vidyabhushan J, Anand K, Mankesh K, Shweta K (2018) Correlation and path coefficient analysis in rice (*Oryza sativa* L.) genotypes for yield and its attributing traits. *J Pharmacog Phytochem* 7: 285-290.
- Nanda K, Bastia DN, Nanda A (2019) Character association and path coefficient analysis for yield and its component traits in slender grain rice (*Oryza sativa* L.). *Electron J Pl Breed* 10(3): 963-969.
- Pal N, Koutu GK, Tiwari A (2016) Genetic variability, correlation and path coefficient studied for grain yield and other yield attributing traits in rice (*Oryza sativa* L.). Int J Agric Sci 8(55): 2988-2992.
- Pragnya K, Radha Krishna KV, Subba Rao LV, Suneetha K (2018)

2786

Estimation of genetic variability parameters in soft rice (*Oryza sativa* L.) genotypes. *Int J Curr Microbiol Appl Sci* 7(6): 2029-2042.

- Pratap A, Bisen P, Loitongbam B, Singh PK (2018) Assessment of genetic variability for yield and yield components in rice (*Oryza sativa* L.) germplasms. *Int J Bio-res Stress Manag* 9(1): 87-92.
- Purwaningsih, Indrasari SD (2019) The paddy and rice quality of three varieties of Indonesia Local Aromatic paddy. Yogya karta Assessment Institute for Agricultural Technology, Indonesia.
- Rahangdale S, Singh Y, Koutu GK, Tiwari S (2019) Genetic variability, correlation and path coefficient studied for yield and quality traits in JNPT lines of rice (*Oryza sativa* L.). Int J Curr Microbiol Appl Sci 8(10): 1025-1037.
- Sahu S, Sharma D, Sao R, Rao GV (2019) Association analysis of yield and yield contributing traits in traditional varieties of rice (*Oryza sativa* L.). *Int J Chem Stud* 7(6): 848-852.
- Shobha Rani N, Subba Rao LV, Viraktamath BC (2006) National guidelines for the conduct of tests for Distinctness, Uniformity and Stability: Rice (*Oryza sativa* L.). Tech. Bull. No.

20, DRR, Hyderabad (India).

- Singh R, Yadav V, Mishra DN, Yadav A (2018) Correlation and Path Analysis Studies in Rice (*Oryza sativa* L.). J Pharmacognosy Phytochemistry 2084-2090.
- Singh RK, Maurya CL, Kumar M, Lal K, Kumar A (2019) Character association and path coefficient analysis for seed yield and quality traits in rice (*Oryza sativa* L.). J Pharmacog Phytochem 8(3): 514-517.
- Singh SK, Singh M, Vennela PR, Singh DK, Kujur SN, Kumar D (2018) Studies on genetic variability, heritability and genetic advance for yield and yield components in drought tolerant rice (*Oryza sativa* L.) landraces. *Int J Curr Microbiol Appl Sci* 7(3): 299-305.
- Srujana G, Suresh BG, Lavanya GR, Ram BJ, Sumanth V (2017) Studies on genetic variability, heritability and genetic advance for yield and quality components in rice (*Oryza sativa* L.). J Pharmacog Phytochem 6(4): 564-566.
- Surjaye N, Singh Y, Singh SK, Rahangdale S, Mehta AK (2022) Genetic variability, correlation and path coefficient study for various yield and quality traits in NPT lines of rice (*Oryza sativa* L.). *Environ Ecol* 40(1): 115-122.