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Abstract

The horticulture production process can be character-
ized as an open and highly complex system affected 
by weather, soil, insects, diseases, weeds, nutrition, 
prices and interactions of these many factors. At the 
moment, knowledge of the whole system is rather 
limited and models describing their behavior are 
incomplete approximations of the real system that 
they attempt to simulate. Nevertheless, it is possible 
to identify different types of problems, a grower 
might be confronted with in horticulture (operational, 
tactical, strategic decisions). In order to implement 
models for decision support, it is not sufficient to 
know the potential problems, it is also necessary to 
understand the decision making process which is 
described from a more theoretical point of view. A 
review of the evolution of computer-based systems for 

supporting decision making completes the preceding 
descriptions. In confronting the different types of real 
problems with the available technical possibilities, 
the discussion about implementation problems will 
be opened, including the question, who should or 
will apply models to derive answers to problems. It is 
concluded that the use of models in practice will only 
increase if the models deal with problems faced by 
the decision makers and if it becomes obvious to the 
farmers that they can derive answers to their problems 
on a more efficient way using specific models.
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Introduction

Studies on crop production are traditionally carried 
out by using  conventional  experience-based  agro-
nomic research, in which crop production functions 
are derived from statistical analysis without referring 
to the under lying biological or physical principles in-
volved.  The application of correlation and regression 
analysis has provided some qualitative understanding 
of the variables and  their interactions that were in-
volved in cropping systems  and has  contributed  to 
the  progress  of  agricultural  science (Kumar and 
Chaturevdi 2012). However, the quantitative infor-
mation obtained from this type of analysis is very 
site-specific.The information obtained  can  only  
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be  reliably applied  to  other  sites  where  climate,  
important  soil parameters  and crop  management  
are similar  to those used  in  developing  the  origi-
nal  functions (Murthy, 2003). Thus, the quantitative  
applicability  of regression  based  crop  yield models  
for  decision  making  is  severely  limited.  In addition,  
because  of  the  unavoidable  variability associated 
with weather, more than 10 years is required to  devel-
op  statistical  relationships  that  are  useful  in  agri-
cultural  decision  making.  Ref  Statistical  evidence 
based on long-term studies generally show that more 
than 40% of the total variation is usually associated 
with experimental error (Jame and Cut forth 1996). 
As knowledge  is  accumulated,  results  obtained  
from observation  change  from  being  qualitative  to  
being quantitative and mathematics can be adopted as 
the tool to express biological hypotheses. Advances 
in computer technology have made possible the 
consideration of the combined influence  of  several  
factors  in  various interactions. (Van Ittersum et al. 
2003) As  a  result,  it  is  possible to  quantitatively 
combine  the  soil,  plant,  and  climatic  systems  to  
more accurately predict crop yield. Thus, with the 
availability of inexpensive  and  powerful  computers  
and  with  the growing  popularity  of  the  applica-
tion  of  integrated systems to agricultural practices, 
a new era of agricultural research  and  development  
is  emerging  (Jones et al.1993). In  crop  growth  
modeling, current  knowledge of plant  growth and  
development from various  disciplines, such as  crop 
physiology, agro meteorology, soil science and 
agronomy, is integrated in a consistent, quantitative 
and process-oriented manner (Batchelor et al. 2002). 
Computerized  decision  support  systems  that  allow 
users to combine technical knowledge contained in 
crop growth  models  with  economic  considerations  
and environmental  impact  evaluations  are  now  
available .DSSAT (Tsuji et al. 1994)  is an  excellent 
example  of a management tool that enables individual 
farmers to match the biological requirement of a crop 
to the physical characteristics of the land to obtain 
specified objectives. In  the Ghanaian  research  sector,  
modeling  is  a  new discipline  and  basic  back-
ground  information  on  the application of models 
in research is not easily available (Oteng-Darko et al. 
2012). Lack  of  awareness  about  model  structure,  
possibilities and  limitations  have  been  identified  as  
hindrance  to model application in our society. With 

remote sensing method, the form of crops developed 
in an area, crop state, and yield can be considered. 
Recording crop state by remote sensing can get the 
crop status in addition to the condition and progress 
of their development. Obtaining the crop situation 
data at early steps of crop development is still more 
significant than acquiring the fixed production after 
harvest period (Pinter et al.2003).

Modeling: Definition and concepts

Modelling is the use of equations or sets of equations 
to represent the behavior of a system. In effect crop 
models are computer programmes that mimic the 
growth and development of crops (USDA 2007). 
Modelling represents a better way of synthesizing 
knowledge about different components of a system, 
summarizing data, and transferring research results to 
users (France and Thornley 1984). Model simulates or 
imitates the behavior of a real crop by predicting the 
growth of its components, such as leaves, roots, stems 
and grains. Thus, a crop growth simulation model 
not only predicts the final state of crop production or 
harvestable yield, but also contains quantitative infor-
mation about major processes involved in the growth 
and development of the crop. Crop models can be 
used to understand the effects of climate change such 
as elevated carbon-dioxide changes in temperature 
and rainfall on crop development, growth and yield.

Two decades ago, it was not certain whether the 
complex physical, physiological and morphological 
processes involved in the growth of a plant could be 
described mathematically, except perhaps in some 
controlled environments. Thus, the relevance of crop 
growth simulation models in crop agronomy was 
challenged (Passioura 1973). However, during the 
past 40 years, crop growth modelling has changed 
dramatically. In the sixties, the first attempt to model 
photosynthetic rates of crop canopies was made (De 
Wit 1965). The results obtained from this model 
were used among others, to estimate potential food 
production for some areas of the world and to provide 
indications for crop management and breeding (De 
Wit 1967, Linneman et al. 1979).

Empirical  models: These  are  direct  descrip-
tions of observed data and are generally expressed as 
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regression equations  (with one  or  a few  factors)  and 
are  used to estimate the final yield. This approach is 
primarily one of examining the data, deciding on an 
equation or set of equations and fitting them to data 
(Jones et al. 2003). These models give no information 
on the mechanisms that give rise to the response. 
Examples of such models include those used for  
such experiments as  the response  of  crop  yield  to 
fertilizer application,  the  relationship  between  leaf  
area and leaf size in a given plant species and the 
relationship between stalk height alone or coupled 
with stalk number and/or diameter and final yield 
(Roubtsova 2014).

Mechanistic models: A mechanistic model is one 
that describes the behavior of the system in terms of 
lower-level attributes (Johnson 2003).  Hence, there 
is some mechanism, understanding or explanation 
at the lower levels (eg. cell division). These models 
have the ability to mimic relevant physical, chemical 
or biological processes and to describe how and why 
a particular response occurs. The modeler  usually  
starts  with  some  empirism  and  as knowledge 
is gained additional parameters and variables are  
introduced  to  explain  crop  yield.  The system is 
therefore broken down into components and assigned 
processes. Static and dynamic models: A static model 
is one that does  not  contain  time  as  a  variable  
even  if  the  end-products of cropping systems are 
accumulated over time. In contrast dynamic models 
explicitly incorporate time as a variable and most 
dynamic models are first expressed as differential 
equations (Challinor et al. 2009).

Deterministic models: A deterministic model 
is one that makes definite predictions for quantities 
(e.g. crop  yield or rainfall) without any associated 
probability distribution, variance, or random element 
(Rauff and Bello 2015). However, variations due to 
inaccuracies in recorded data and to heterogeneity 
in the material  being dealt  with are  inherent to  
biological and agricultural systems (Brockington 
1979). In  certain  cases,  deterministic  models  may  
be adequate despite these inherent variations but in 
others they  might  prove  to  be  unsatisfactory  e.g.in 
rainfall prediction.  The greater the uncertainties in 
the system, the more inadequate deterministic models 
become. Stochastic models: When variation and un-

certainty reaches a high level (Di Paola et al. 2016), 
it becomes advisable to develop a stochastic model 
that gives an expected mean value as well as the as-
sociated  variance.  However, stochastic models tend 
to be technically difficult to handle and can quickly 
become complex.  Hence,  it  is  advisable  to attempt  
to  solve  the  problem  with  a  deterministic approach 
initially and to attempt the stochastic approach only if 
the results are not adequate and satisfactory (Wallach 
et al. 2014).

Simulation models: These form a group of 
models that is designed for the purpose of imitating 
the behaviour of a system (Jones JW et al. 2017). 
Since they are designed to mimic the system at short  
time  intervals  (daily  time-step),  the  aspect  of 
variability  related  to  daily  change  in weather  and  
soil conditions  is  integrated. The  short  simulation 
time-step demands  that  a  large  amount  of  input  
data  (climate parameters, soil characteristics and crop 
parameters) be available for the model to run. These 
models usually offer the  possibility  of  specifying  
management  options  and they  can  be  used  to  
investigate  a  wide  range  of management strategies 
at low costs (Ewert et al. 2011).

 Optimizing models: These models  have  the  
specific objective  of  devising  the  best  option  in  
terms  of management inputs for practical operation 
of the system (Ramirez-Villegas et al. 2015). For 
deriving solutions, they use decision rules that are 
consistent with some optimizing algorithm. This 
forces some rigidity into their structure resulting in 
restrictions in representing stochastic and dynamic 
aspects of agricultural systems. Crop model appli-
cations simulation  modeling  is  increasingly  being  
applied  in research, teaching, farm and resource 
management and policy  analysis  and  production  
forecasts (Challinor et al. 2014).They can be ap-
plied, namely, research, crop system management, 
and policy analysis. Research understanding: Model  
development ensures the  integration  of  research  
understanding  acquired through  discreet  disciplinary  
research  and  allows  the identification  of the  major 
factors  that drive  the system and can highlight areas 
where knowledge is insufficient (Palosuo et al. 2011). 
Thus, adopting a modeling approach could contribute 
towards more targeted and efficient research planning 



1321

 

Integration of knowledge across disciplines: Adoption 
of a modular framework allows for the integration of 
basic research that is carried out in different regions, 
countries and continents. (Olesen et al.2004). This 
ensures a reduction of research costs (e.g., through 
a reduction in duplication of research) as well as the 
collaboration between researchers at anointer national 
level. Improvement in experiment  documentation and 
data organization: Simulation  model  development,  
testing and  application  demand  the  use of  a  large  
amount  of technical and observational  data supplied 
in given  units and  in  a  particular  order (Clevers 
and Vonder 2002). Data handling forces the modeler 
to resort to formal data organization and database 
systems. Site-specific  experimentation: Specific  site  
selection can  be  using the  model  Crop  models  
can  be used  to predict crop  performance in regions  
where the crop  has not  been  grown  before  or  not  
grown  under  optimal conditions. Yield  analysis: 
When  a  model  with  a  sound physiological  back-
ground  is  adopted,  it  is  possible  to extrapolate 
to other environments. Simulation models are used 
to climatically-determined yield in various crops 
(Brisson et al.1998).

Crop modeling in fruit crops

Fruit producers have, over the last decades, been 
adopting a wide variety of new technologies to 
meet increased market demands and environmental 
standards, to improve production quantity, to avoid 
losses, and to reduce maintenance costs. Increasing 
fruit quality and uniformity requirements are met by 
breeding, post-harvest technology, better management 
practices and more intensive monitoring (Ladaniya, 
2007). In recent years, fruit quality has become an 
increasingly important aspect of fruit production. 
Thus, a new field of science has been emerging that is 
loosely termed functional-structural plant modelling 
(Godin and Sinoquet 2005). Several authors (Behera 
and Panda 2009; Bojacá et al. 2009) have developed 
and used models that explain the effect meteorolog-
ical variables have on the growth of different kinds 
of crops. As convincingly demonstrated by de Wit 
(1986), agricultural productivity depends primarily 
on the carbon assimilation and partitioning systems. 
Thus the backbone of crop models of this type in-
volves modelling of plant photosynthesis, respiration 

and the allocation of the net photosynthate to the 
fruit or organs of interest. This includes, of course, 
annual crops as well as fruit tree crops. Nowadays, the 
interest in mathematical modelling about the quality 
changes during fruit maturation has been increased 
(Wegehenkel and Mirschel 2005). Fruit quality is a 
complex issue. It involves a set of traits such as fruit 
size, overall composition, taste, aroma, texture and 
proportion of edible tissue (Genard et al. 2007, Gru-
da 2005). The links between environmental control 
and quality traits have been extensively investigated 
(Wu et al. 2002, Challinor et al. 2004). Even though 
every process involved in fruit physiology cannot be 
integrated into a model, a real degree of complexity 
is needed since fruit exchanges energy and mass with 
its environment and it is composed of a large number 
of diverse components (different sugars, acids) which 
interact with each other non-linearly (Genard et al. 
2007).Taste mainly results from the accumulation 
of sugars and acids in fruit cells. This accumulation 
can be controlled through the intensity of metabolic 
transformations. These processes are well known and 
have been extensively described in the literature (Ho, 
1998, Wink 1993). On this basis, Genard et al. (2007) 
designed a mechanistic model called SUGAR to pre-
dict changes in sugar composition during each fruit 
development. In this model, sugars are either directly 
stored in the cells, transformed into other sugars, 
or used to synthesize other compounds. Lobit et al. 
(2006) designed two models predicting fruit acidity, 
the first one described citric acid production and 
degradation through the citrate cycle. In the second, 
malic acid content was modelled mainly on thermo-
dynamic conditions of its transport from cytosol to 
vacuole. Fruit tree crops share an important number 
of commonalities with annual crops (Goldschmidt 
and Lakso 2005) most processes occurring in annuals 
will occur in fruit tree crops. Therefore knowledge 
gathered on the modelling of annual crops provides 
a first basis to develop more advanced models for 
perennial fruit crops. Photosynthesis-driven models 
are also common for perennial fruit trees. Such pho-
tosynthesis-driven models have been developed for 
apples (Baumgaertner Graf and Zahner1984, Seem 
et al. 1986), grapes (Gutierrez et al. 1985), kiwifruit 
(Buwalda 1991), olives (Abdel-Razik 1989) and 
peaches (Grossman and Dejong 1994). Pioneering 
work of C.T. dewit (Van Ittersum et al. 2003), most 
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process-based fruit models have focused on carbon 
relationships leading to predictions of fruit growth 
in dry mass.

Crop modeling in vegetable crops

A dynamic simulation model for tomato crop growth 
and development, (TOMSIM) was validated for four 
glasshouse experiments with plant den sity and fruit 
pruning treatments and on data from two commercial-
ly grown crops. In general, measured and simulated 
crop growth rates from 1 month after planting on-
wards agreed reasonably well, average overestimation 
being 12%. However, crop growth rates in the first 
month after planting were overestimated by 52% on 
average. Final crop dry mass was overestimated by 
0 - 31%, due to inaccurate simulation of LAI, result-
ing partly from inaccurate SLA prediction, which is 
especially important at low plant density and in a 
young crop(Heuvelink 1999). Rregression models 
were generated to mimic the behavior of minerals in 
tomato plants and they were included in the model 
in order to simulate their dynamic behavior. The 
results of this experiments showed that the growth 
model adequately simulates leaf and fruit weight (EF 
> 0.95 and Index > 0.95). As for harvested fruits and 
harvested leaves, the simulation was less efficient (EF 
< 0.90 and Index < 0.90). Simulation of minerals was 
suitable for N, P, K and S as both, the EF and the In-
dex, had higher values than 0.95. In the case of Ca and 
Mg, simulations showed indices below 0.90. These 
models can be used for planning crop management 
and to design more appropriate fertilization strategies. 
A mechanistic crop growth model for glasshouse 
tomato (TOMSIM) has been developed (Heuvelink 
et al. 1995) and the following of its submodels (mod-
ules) validated greenhouse transmissivity (Heuvelink 
et al. 1996), photosynthesis (Heuvelink et al. 1996), 
dry matter production  and truss appearance rate, fruit 
growth period and dry matter partitioning(Bertin and 
Heuvelink 1993). Sensitivity analyses for the modules 
for dry matter production and dry matter distribution 
were presented previously (Heuvelink et al. 1995).

Theoretical model of greenhouse microclimate 
was developed for describing heat and mass transport 
processes in a greenhouse row-crop stand, including 
radiation transfer, energy balance, transpiration and 

CO2 exchange. The canopy was described as a series 
of parallel rows with pseudorectangular cross-sec-
tions and variable architectural parameters. Each of 
the individual submodels was parameterized from 
experimental data for a dense row cucumber crop. The 
general theoretical considerations were assembled 
into a dynamic simulator by applying energy and 
mass balances simultaneously over differential strata 
of plant leaves and greenhouse air. Outputs of the 
simulator included both diurnal courses and vertical 
profiles of leaf temperature, air temperature, humidity 
and CO2 concentration in addition to energy and mass 
exchange(Yang et al.1990). Simple model of carbon 
distribution for the simulation of root development 
of a cucumber crop. Roots are an important sink and 
growth of small fruits (before flowering) may be 
strongly inhibited in the case of low photosynthetic 
activity. Root growth is an opposite function of the 
fruit load and there is a close correlation between the 
simulated rate of root growth and the root lengthening 
(Chamont 1993).

A regression model for cucumber dry matter 
production was established based on Logistic curve 
and the time state variable was expressed as a logistic 
function about effective temperature accumulation 
(ETA) and effective light intensity accumulation 
(ELIA). ETA was defined as the sum of the tempera-
ture that was higher than physiological zero point in 
certain period, and ELIA was defined as the sum of the 
light intensity that was higher than light compensation 
point multiplied with time in certain period. Tempera-
ture, light intensity and day length were synthetically 
considered. The model had less state variables, and 
provided the relationships between the cucumber dry 
matter accumulation (DMA) per plant and environ-
mental data (temperature, radiation and day length). 
The result of simulation was satisfied, because RMSE 
value was less than 6, and the R2 value of the results 
was 0.99. It indicated that the regression model for 
cucumber dry matter production was reasonable and 
feasible (Song and Qiao 2008).

Limitations

As George E.P. Box Systems Science Professor re-
portedly said “All models are wrong. Some models 
are useful”. It is important to acknowledge the first 
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statement for complex systems like fruit trees, but 
to strive for usefulness. Crop models are not able 
to give accurate projections because of inadequate 
understanding of natural processes and computer 
power limitation. As a result, the assessments of 
possible effects of climate changes, in particular, are 
based on estimations. Moreover, most models are 
not able to provide reliable projections of changes 
in climate variability on local scale, or in frequency 
of exceptional events such as storms and droughts 
(Shewmake et al. 2012). General Circulatory Models 
(GCMs) have so far not been able to produce reliable 
projections of changes in climate variability, such as 
alterations in the frequencies of drought and storms, 
even though these could significantly affect crop 
yields. As different users possess varying degrees 
of expertise in the modeling field, misuse of models 
may occur. Since crop models are not universal, 
the user has to choose the most appropriate model 
according to his objectives. GCMs do a reasonable 
job in simulating global values of surface air tempera-
ture and precipitation, but do poorly at the regional 
scale(Grotch et al. 1988).

Conclusion

Model development can contribute to identify gaps 
in our knowledge, thus enabling more efficient and 
targeted research planning. Species diversity, crop 
nature, quality parameters and yield were decided 
the good decision making in the crop modeling. This 
will be possible only if cooperation among scientific 
disciplines develops. So that better crop modeling 
were involved between crop physiologists and ge-
neticists, plant pathologists, entomologists, and food 
technologists. In terms of designing decision support 
systems, specialists in agricultural engineering, farm-
ing systems and computer sciences. The adoption 
of standard units, formation of inputs and outputs, 
selection of variables, the production of proper doc-
umentation, limitations and the use of procedures of 
software quality assurance would increase the porta-
bility of models and lower the risk of error or misuse. 
An intensely calibrated and evaluated model can be 
used to effectively conduct research that would in the 
end save time and money and significantly contribute 
to developing sustainable agriculture that meets the 
world’s needs for food. 
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