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ABSTRACT 

Quercus oblongata D. Don is an economically and 
ecologically important tree species. It is distributed 
in the western Himalayan region of India as well as 
Nepal, Pakistan, Thailand, and Vietnam. The present 
study explored the potential distribution and habitat 
suitability of Q. oblongata using ensemble modeling. 
Eleven environmental variables (eight bioclimatic 
and three topographic), and 121 occurrence records 
were used in the analysis. Four algorithms: Gener-
alized Additive Model (GAM), Generalized Linear 
Model (GLM), Random Forest (RF), and Maximum 
Entropy (MaxEnt) were used to build the ensemble 
model for potential suitable habitat of Q. oblongata. 
To evaluate the model performance, AUC and TSS 

metrics were used, which showed high AUC (>0.94) 
and TSS (>0.86) metrics for all the models. The envi-
ronmental variables that displayed high contribution 
in the prediction were temperature annual range (bio7, 
48.5%), precipitation of wettest period (bio13 ; 41%), 
and elevation (elev ; 40%). The total suitable area was 
22634 km2, including the least (12546 km2), moderate 
(7935 km2), and highly (2153 km2) suitable areas. 
Habitat suitability of Q. oblongata is predicted in 
most of the regions of Nainital, Almora, central Tehri 
Garhwal, eastern Mussoorie  and Chakrata region of 
Dehradun District of Uttarakhand. A sizeable wide 
patch was found in Southern Chamba with Northern 
Kangra District, including the northern region of 
Mandi District of Himachal Pradesh. The predicted 
suitable habitat can be used for future exploration 
for the study of genetic diversity and conservation 
purposes. 

Keywords   Ensemble model, Environmental vari-
ables, MaxEnt, Random forests, Quercus. 

INTRODUCTION

Quercus oblongata D. Don (Fagaceae) is a broad-
leaved, evergreen and dominant tree species dis-
tributed in India, Nepal, Pakistan, Thailand and 
Vietnam (Govaerts and Frodin 1998). Q. oblongata 
generally occurs at higher elevations ranging from 
1200 to 3000 meters. Q. oblongata is an important 
tree species whose products (acorns, bark, timber, 
and leaves) have been used in ethnomedicine and 
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livestock healthcare by Joshi and Juyal (2017) and 
Sati et al. (2017). Fruits, leaves, barks, and gum of Q. 
oblongata have potential antibacterial and antifungal 
properties, making them useful in the treatment of 
several diseases like gonorrhea, digestive problems, 
diarrhea and asthma (Singh and Bisht 2018). 

In India, Q. oblongata is widespread in the 
mountainous regions of western Himalaya, especially 
in Uttarakhand (Rawat et al. 2021). Mountainous 
regions of the western Himalayas are facing habitat 
depletion due to deforestation, land fragmentation, 
construction of roads on hills, and forest fires (Negi 
et al. 2017). Additionally, unsustainable utilization 
for fuel and fodder resulted in the decline of Quercus 
populations in western Himalayas. These challenges 
may influence the growth, and distribution of Q. 
oblongata in western Himalayan. Thus, the knowl-
edge of suitable habitat areas can be helpful for the 
restoration and conservation of Q. oblongata in the 
western Himalayan region of India.

Species distribution modeling (SDM) is an effec-
tive tool to map the potential habitat distribution of 
plant species. The utility of SDM has been exploited 
in the various research areas of ecology, evolutionary, 
and conservation studies (Lee-Yaw et al. 2022). Ap-
plicability of SDM has also been identified in the pop-
ulation discovery, disease prevalence, invasion risk, 
and species future survival (Srivastava et al. 2019). 
SDM technique utilizes the environmental informa-
tion and geographical occurrence of species data to 
provide the species niche information. Various SDM 
methods has been developed for distribution modeling 
namely MARS (Multivariate Adaptive Regression 
Splines), CART (Classification and Regression 
Trees), GRASP (Generalized Regression Analysis 
and Spatial Prediction), GARP (Genetic Algorithm 
for Rule-set Prediction), GAM (Generalized Additive 
Model) and GLM (Generalized Linear Model), RF 
(Random Forests) and MaxEnt (Maximum Entropy) 
(Hao et al. 2019). Every model uses a separate set of 
algorithms and guiding concepts. One such example 
is requirement of pseudo-occurrence data, which is 
essentially required by GAM, GLM and RF. Whereas 
MaxEnt required background information of target 
species for prediction analysis (Hao et al. 2019). Con-
structing an ensemble model for prediction analysis is 

generally more reliable rather than a single model as 
the ensemble model maximizes the prediction anal-
ysis (Pecchi et al. 2019). Naimi and Araújo (2016), 
develop an R packages ‘sdm’, which supports several 
modeling methods including ensemble function. This 
R package enables us to compare alternative mod-
eling methodologies in order to achieve the needed 
multi-model or ensemble model analysis.

Therefore, the present study used ensemble 
method to identify the potentially suitable habitat for 
Q. oblongata for its management and conservation 
in western Himalaya with the following objectives: 
(1) Identify the environmental variables related with 
the distribution of Q. oblongata and (2) determine 
potentially suitable habitat for Q. oblongata within its 
native habitats related to the current climate scenario 
(1970-2000).

MATERIALS AND METHODS

Study location 

The study area was the western Himalayan region 
(WHR) of India. The western Himalayan region is 
the largest section of the Indian Himalayas, encom-
passing three Indian states: Jammu and Kashmir, 
Himachal Pradesh, and Uttarakhand. The Himalayas 
plays crucial role for weather patterns in the Indian 
subcontinent to south and central Asian highlands 
to north. On the southern slopes of the Western 
Himalayas, the average annual rainfall varies from 
Shimla and Mussoorie (about 1530 mm) to Leh 
region in the Ladakh of the Indus Valley (75 to 150 
mm). The study area covers a geographical area of 
about 4,55,602 km2, extends from 28.8°N to 37.0°N 
latitude to 72.5°E to 80.9°E longitude. The altitude 
ranges from 186 to 8246 m, increasing northeastward. 
In addition to its varied height gradients, this region is 
habitat to a broad range of forest types. According to 
Haq et al. (2023), the main vegetation types include 
evergreen, deciduous forest, evergreen needle-leaf, 
mixed, shrubland, and grassland. 

Study species

Quercus oblongata is an evergreen tree up to 25 
m tall (Figs. 1a–b). Its leaves are narrower, more 
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ovate-elliptic or lanceolate, the margin coarsely 
dentate, and typically, the entire area near the base 
is densely white, or there is pale tomentose beneath. 
The leaf base might be acute or cuneate, apex acum-
inate, 10–20 pairs of nerves; petiole 6–25 mm acorn 
ellipsoid-ovoid, apex acute; glabrous, singly or paired 
on a hairy rachis, enclosed 1/3 to 1/2 by cup, cupule 
sessile with small triangular, appressed scale (Fig. 
1c). Male and female flowers are on separate shoots, 
male flowers are in clusters, pendulous. Male catkin is 

3–8 cm long, tomentose; pistillate inflorescences are 
1–2 cm long, and 3–8 is flowered. Blooming occurs 
between April and May, while fruits occur between 
October to November. Pollination to fruit ripening 
takes over a year.

Occurrence data

The geographical occurrence information of  Q. ob-
longata was obtained by consulting national (CAL, 

Fig. 1. Q. oblongata, habitat in the western Himalayan region of Uttarakhand, India (a), habit (b), acorns (c).

Fig. 2. Map showing the sampling locations of Q. oblongata from the western Himalayas in India.
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ASSAM, LWG, BSD and DD), international herbaria 
(E, BR, GH, G, P and K), and available literature. 
A total of 46 occurrence records were retrieved.  
Herbarium specimens lacking geo-coordinate data 
were analyzed in the Google Earth engine (https://
www.google.com/intl/en_in/earth/about/versions/) 
to determine the exact coordinates based on locality 
description. Based on the preliminary information 
obtained from the herbaria and literature, field surveys 
were conducted in the Himalayan region of Uttara-
khand and Himachal Pradesh during 2020–2021. 
The natural habitat of Q. oblongata, such as broad 
leaves forest, mixed forest and hilly slope (>850 m 
elevation), was surveyed, and 75 geo-coordinates 
were documented (Fig. 2). Thus, 121 geo-occur-
rence records were obtained, including occurrence 
records from field surveys, herbaria, and literature. 
To reduce the spatial autocorrelation in occurrence 
records and improve the model prediction, first, we 
removed duplicate occurrence records, and therefore 
ENMTools v1.4.4 (Warren et al. 2010) was employed 
to select the only one occurrence record in a grid size 
of raster layer of approximately 1 km2 area. Finally, 
87 non-redundant occurrence records were selected 
for prediction analysis from 121 records. 

Environmental data

Nineteen bioclimatic variables (bio1–bio19) and a 
topographic variable (elevation) were downloaded 
from World Clim v2.1 (https://www.worldclim.org; 
Hijmans et al. 2005) for the current period (1970–
2000). Two topographic variables (slope and aspect) 
were translated from the elevation (asc file) using 
QGIS v3.14.1 Pi (QGIS development team 2020). The 
variables used for niche modeling were at a spatial 
resolution of 0.5 arcminutes (~1 km2). Multi-collin-
earity among the bioclimatic variables may affect the 

prediction analysis, as they are mainly derived from 
temperature and precipitation (Wang et al. 2022). 
Therefore, to avoid multi-collinearity among the 
variables, a Pearson correlation test was performed 
using ENMTools v1.4.4 (Warren et al. 2010). In 
the correlation analysis, if the two variables with a 
high cross–correlation coefficient (>0.8 or <–0.8), 
then only one variable was selected (Yi et al. 2016) 
(Table 1). This analysis led to the exclusion of 11 
bioclimatic variables out of 19 bioclimatic variables. 
Considering the ecological importance of topographic 
variables, the correlation analysis was not applied for 
elevation, slope, and aspect. Finally, eight bioclimatic 
variables and three topographic variables were used 
in the model prediction: Mean diurnal range (bio2), 
Isothermality (bio3), temperature annual range (bio7), 
mean temperature of wettest quarter (bio8), mean 
temperature of driest quarter (bio9), precipitation of 
wettest period (bio13), precipitation of driest period 
(bio14), precipitation seasonality (bio15), aspect, 
elevation and slope. 

Modeling approach

In this study, we employed an ensemble modeling 
strategy developed in the ‘sdm’ v1.1-8 package 
(Naimi and Araújo 2016  https://www.biogeoinfro-
matics.org) conducted using R 4.1.0 (R Core Team 
2021). This platform supports certain recognized 
distribution models: GAM, GLM, RF and MaxEnt. 
Model evaluation was carried out using the bootstrap 
approach with ten replications, with 70% of the oc-
currence data used for validation and 30% for evalu-
ating the model. In addition, 1000 background points 
were produced automatically using the ‘sdm’ v1.1–8 
software. Two metrics were used to test the model’s 
accuracy: Area under the ROC Curve (AUC) and True 
Skill Statistics. An AUC value ranges between 0–1 ;  

Table 1. Pearson correlation coefficients test of seven unrelated bioclimatic variables for Q. oblongata.

 Variables  bio 2 bio 3  bio 7 bio 8 bio 9 bio 13 bio 14 bio 15

 bio 2 1       
 bio 3 0.215 1      
 bio 7 0.652 –0.593 1     
 bio 8 –0.001 0.754 –0.595 1    
 bio 9 –0.199 0.632 –0.655 0.687 1   
 bio 13 –0.299 0.712 –0.788 0.774 0.761 1  
 bio 14 –0.490 0.360 –0.702 0.292 0.595 0.459 1 
 bio 15 0.351 0.507 –0.106 0.481 0.071 0.479 –0.269    1  
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a value near 1 will be an excellent distinction, and the 
model will be accurate and descriptive (Carter et al. 
2016). However, the TSS runs from –1 to 1, with values 
below zero indicating performance comparable to 
random (Davoudi et al. 2020). Suitability maps were 
created using QGIS v 3.14.1 Pi (QGIS Development 
Team 2020). The suitability region of the species 
distribution map ranged from 0 to 1 and was divided 
into four classes of prospective distribution, namely 
unsuitable (0–0.25), least suitable (0.25–0.50), mod-
erate suitable (0.50–0.75), and high suitable (0.75–1) 
(Maurya et al. 2023). 

RESULTS AND DISCUSSION

Species distribution modeling (SDM) has been widely 
used to assess the possible distribution of flora and 
fauna based on the occurrence locations and envi-
ronmental datasets. SDMs are used to forecast how 
the distribution of plant species habitats would alter 
due to increased global temperature (Fourcade et al. 
2014).

Model performance 

The accuracy of GAM, GLM, RF, and MaxEnt pre-
dictions is shown in Table 2. The RF model produced 

the most favorable results (AUC = 0.98, TSS = 0.90), 
subsequent to MaxEnt (AUC = 0.97, TSS = 0.87) 
and GAM (AUC = 0.95, TSS = 0.89). Meanwhile, 
GLM had the lowest performance (AUC = 0.94; 
TSS = 0.86).

Since the AUC values of all four models in 
this study were significantly higher than 0.9 and the 
TSS values were almost equal to 1, all four models 
performed well of forecasting the potential distri-
bution areas of Q. oblongata (Watling et al. 2015). 
Specifically, the MaxEnt model was more precise 
in determining the distribution limits of the species, 
followed by GAM, GLM and RF. The high predictive 
performance of MaxEnt, GAM, GLM and RF sug-
gests that modeling with these models can be applied 
confidently to mapping the suitable habitats areas for 
Q. oblongata in the WHR (Fig. 3). These models were 

Table 2. Model performance as determined by evaluation criteria 
in the Q. oblongata.

    Methods        AUC            COR           TSS          Deviance
 
 GAM 0.95 0.8 0.89 1.65
 GLM 0.94 0.76 0.86 0.40
 RF 0.98 0.85 0.90 0.19
 MaxEnt 0.97 0.79 0.87 0.28

Fig. 3. Results of the bootstrap replication method used for the area under the ROC curve (AUC) of GAM, GLM, RF, and MaxEnt.
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also successfully applied in previous studies of niche 
modeling in different oak species like Quercus ilex 
(Suicmez and Avci 2023), Q. brantii (Mirhashemi 
et al. 2023), and Q. acerifolia (Subedi et al. 2023).

Contribution of variables to the models

The relative importance of eleven variables influenced 
to the models and the potential distribution of Q. 
oblongata: Temperature annual range (bio7, 48.5%), 
precipitation of wettest period (bio13 ; 41%), eleva-
tion (elev ;  40%) and mean temperature of wettest 
quarter (bio 8 ; 37.7%) were the highest contributing 
variables. Isothermality (bio 3 ; 26.3%), mean diurnal 
range (bio 2 ; 26.1%), mean temperature of driest 
quarter (bio 9 ; 25.4%), and precipitation seasonality 
(bio 15 ; 17.2%) also contributed substantially to the 
model prediction. Other variables, i.e., precipitation 
of the driest period (bio 14), aspect, and slope, con-
tribute nominally to model prediction (Fig. 4).

Environmental variables are key components that 
restrict the distribution of terrestrial plant species. 
Bioclimatic and topographic variables are recognized 
as major factors in the distribution of plant species 
in different parts of the world. In the current study, 
the temperature variable (temperature annual range ; 
bio 7), precipitation variable (precipitation of wettest 
period ; bio 13), and topographic variable (elevation) 
were the most affecting environmental predictors, 

which played a crucial role in the distribution of Q. 
oblongata in the WHR.

Temperature is the critical environmental predic-
tor for Quercus species, restricting their geographical 
distribution (Maes et al. 2019). Changes in the optimal 
requirements temperature affect the plant’s physiolog-
ical processes like photosynthesis, and transpiration. 
It also affects plant growth, leaf water potential, gas 
exchange, reproduction, and development stages in 
plants reported by Bahuguna and Jagadish (2015). 
Therefore, changes in temperature requirements can 
affect plant distribution as plants cannot migrate or 
shelter from adverse conditions (Christmas et al. 
2016).  In contrast, lower humidity leads to nearly half 
of the flowers maturing into acorns, and this cause 
the decline in the fruits number. However, the low 
temperature only affects oak flowering once freezing 
occurs (Körner et al. 2016). Saran et al. (2010) sug-
gested that the rising of minimal temperature (1 to 
2°C) would cause a reduction in the distribution of Q. 
semecarpifolia in the Himalayan region. Similarly, in 
terms of the importance of precipitation as a climatic 
driver in Quercus, precipitation was the leading pre-
dictor of vegetative growth or flowering. Precipitation 
had an impact on the timing of breaking leaf buds and 
flowers in Q. lobata, while excessive precipitation 
favored the early development of flowers or flower 
buds in Q. alba (Gerst et al. 2017). The elevation is 
another major factor that contributed greatly to the 
distribution of Q. oblongata as the distribution of Q. 
oblongata only occurs on the montane zone and slope 
in the western Himalayas. Elevation was also recog-
nized as a major critical predictor of the habitat dis-
tribution of different oak species, i.e., Kharsu oak (Q. 
semecarpifolia), Moru oak (Q. floribunda), Banj oak 
(Q. leuchotrichiphora), and Q. suber (Chakraborty et 
al. 2016, Laala et al. 2021). Elevation plays important 
role in seed germination and physical characteristics, 
such as length and weight in oak species (Saklani et 
al. 2012). It had hypothesized that topographic factors 
(such as elevation, slope, and aspect) have a second-
ary impact on bioclimatic factors (like temperature 
and precipitation), which directly affect plant growth 
and development (Maharjan et al. 2022). Therefore, 
temperature, precipitation, and elevation are vital 
environmental variables affecting the distribution 
pattern and acorn production of this oak species.

Fig. 4. Relative importance of bioclimatic and topographic vari-
ables on the habitat modeling of Q. oblongata.
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Current potential distribution

The current potential distribution map of Q. oblongata 

in the western Himalayan region of India is shown 
in Fig. 5. The MaxEnt predicted more suitable areas 
(29200 km2) than the other three algorithms. It cov-

Fig. 5. Current distribution of the suitable habitats for Q. oblongata in all four models: (a) GAM, (b) GLM, (c) RF, and (d) MaxEnt.

Fig. 6. Current distribution of suitable habitats for Q. oblongata using ensemble model in WHR.
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ers most of the region of Uttarakhand (Fig. 5d). In 
contrast, the RF method predicted the least suitable 
areas (14223 km2) for Q. oblongata (Fig. 5c). The 
GLM (Fig. 5a) and GAM (Fig. 5b) methods predict-
ed similar suitable habitats accounting for 24960 
km2 and 20066 km2, respectively (Table 3). In all 
four algorithms, large parts of suitable areas were 
observed in the eastern Mussoorie, Raipur, western 
Dhanaulty, and Chakrata region of Dehradun District, 
as well as Almora, Ranikhet, and Nainital District of 
Uttarakhand. GAM is the only model that shows the 
habitat suitability in northern Shimla, most of the 
Mandi region, southern Chamba, and central Kangra 
District of Himachal Pradesh, and sparsely distributed 
in the bordering area of Raisi and Anantnag region of 
Jammu and Kashmir.
 

Based on the ensemble analysis the entire 
suitable and unsuitable area (~391818 km2) was 
classified into four classes. Among the total suitable 
areas, unsuitable, least, moderate, and highly suitable 
habitats were 372353 km2 10790 km2, 6824 km2 and 
1851 km2, respectively (Table 3).

An ensemble model analysis predicted that the 
habitat of Q. oblongata was widely distributed across 
Uttarakhand, central Himachal Pradesh, and some 
small patches in the Jammu and Kashmir region of 
Western Himalaya (Fig. 6). 
  

However, the highly suitable areas for Q. oblon-
gata were mainly located in Nainital, Almora, some 
parts of Bageshwar, the maximum region in Tehri 
Garhwal, and the upper region of Mussoorie and 
Chakrata region of Dehradun District. In contrast, 
small patches were sparely distributed in the southern 
Chamoli district of Uttarakhand. A sizeable wide 

patch was found in Southern Chamba with northern 
Kangra District, including the northern region of 
Mandi District of Himachal Pradesh.

CONCLUSION

In this study, the current suitable habitat for Q. oblon-
gata was identified in most of the western Himalayan 
region of India, although highly suitable habitats 
were restricted to Uttarakhand, central Himachal 
Pradesh, and some parts of Jammu and Kashmir. 
Temperature variables (bio7), precipitation (bio13), 
and topographic variables (elevation) were the most 
determining factors for its habitat distribution. The 
predicted habitat areas in this study will serve as a 
baseline reference for the development of forest man-
agement and conservation planning of this forest tree 
species. The estimated potential habitat areas could be 
investigated further for genetic diversity assessment 
and economic utilization of Q. oblongata in India.
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Table 3. Potential suitable habitat areas of Q. oblongata in GAM, 
GLM, RF, MaxEnt, and ensemble modeling.

                        Least        Moderate       High             Total
  Models     suitable       suitable      suitable          suitable
                    areas (km2)  areas (km2)  areas  (km2)   areas (km2)

GAM 12036 2427 5603 20066
GLM 14097 8440 2423 24960
RF 6140 5246 2837 14223
MaxEnt 17177 10142 1881 29200
Ensemble 10790 6824 1851 19465                         
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