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ABSTRACT

This study delves into the multifaceted impact of cli-
mate change on soils subjected to shifting cultivation 
practices. Our findings reveal a complex interplay of 
both beneficial and adverse effects on the physical, 
chemical, and biological attributes of soils. Moreover, 
climate change exacerbates these detrimental impacts 
by inducing significant alterations in soil characteris-
tics. Specifically, our study underscores that shifting 
cultivation practices, particularly those employing 
short fallow cycles, can pose a considerable threat to 
soil health when subjected to changing climatic con-
ditions. In such scenarios, shifts in temperature and 

precipitation patterns have the potential to magnify 
the adverse consequences of shifting cultivation on 
soils, ultimately outweighing any positive influences. 
This study highlights the critical need for sustainable 
land management strategies, especially in the face of 
climate change, to preserve and enhance soil health 
and resilience in shifting cultivation regions.

Keywords Land use, Land cover change, Climate 
change, Soil dynamic, Tropical forest.

INTRODUCTION

Earth ecosystems are facing rising pressure from two 
main anthropogenic processes including the direct 
process of land use and land cover change (LULCC) 
and the indirect process of climate change (Ostberg 
et al. 2015, Monsang et al. 2021, Upadhyay et al. 
2021). LULCC has been identified as one of the key 
drivers responsible for changes in land surface and 
impacting biophysical, biogeochemical processes and 
ecosystem services (Prestele et al. 2017, Upadhyay 
et al. 2019, Manpoong and Tripathi 2019, Ozukum et 
al. 2019, Upadhyay and Tripathi 2019, Jopir and Up-
adhyay 2019). Abiding LULCCs have transformative 
effects on soil, water and atmosphere, which greatly 
influence the global environmental problems like soil 
health, quality and availability of fresh water, food 
security and biodiversity mainly due to rapid defor-
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estation for agriculture, industrial development and 
urbanization (Scanlon et al. 2007, Tripathi et al. 2012, 
Verburg et al. 2013, Newbold et al. 2015, Tripathi et 
al. 2016, Abdulkareem et al. 2019). Further, climate 
change and LULCC together determine hydrological 
processes such as evapotranspiration, interception 
and infiltration, and impact the water resources 
through spatial and temporal alterations in surface 
and subsurface flow patterns (Wang 2014, Zhang et 
al. 2016, Khoi and Suetsugi 2014, Marhaento et al. 
2017a and b, Marhaento et al. 2018). LULCC and 
climate change have reciprocal effects on each other. 
LULCC control climate change through alterations 
in structure and functioning of ecosystems (Tripathi 
et al. 2008, Pachuau et al. 2014, Tripathi et al. 2016, 
Wapongnungsang et al. 2018, Ao et al. 2020, Ao et al. 
2021) and related fluxes of energy (latent and sensible 
heat and radiative changes) and mass (water vapour, 
CO2 and trace gasses and particulates) (Dale 1997, 
Wilkenskjeld et al. 2013). Whereas, the impact of 
climate change on land use can be witnessed through 
changes in land management strategies to mitigate 
negative effects of climate change (Dale 1997).

Shifting cultivation also known as swidden or 
slash-and-burn or Jhum is one of the most ancient 
farming systems and widely practiced in the tropical 
moist areas of the world (Tripathi et al. 2017, Layek 
et al. 2018, Upadhyay et al. 2018). This land-use 
system forms the basis for land uses, livelihoods and 
customs in upland areas of the tropical forest-agri-
culture for centuries (van Vliet et al. 2012, Dressler 
et al. 2015, Mukul and Herbohn 2016) and involves 
approximately 14-34 million people alone from 
tropical Asia (Mertz et al. 2009). This practice of 
land use was sustainable in the past but now losing 
its credibility due to increasing population density 
and decreasing (< 3 years) fallow length (Grogan 
et al. 2012, Wapongnungsang et al. 2021). As per 
estimates, shifting cultivation is responsible for ~ 
60% of total deforestation in tropical regions and 
acts as a major source of greenhouse gas emissions 
(Geist and Lambin 2002, Davidson et al. 2008). 
Globally, shifting cultivation covers an approximate 
area of 280 Mha (including currently cultivated and 
land abandoned as fallow of different years) with a 
major share in Africa, trailed by Americas and Asia 
(Heinimann et al. 2017). Although, shifting cultiva-

tion is considered unsustainable and harmful to the 
environment (Bruun et al. 2009, Ziegler et al. 2011, 
2009, van Vliet et al. 2012), in many cases, alternative 
land-uses like promoting plantations of commercial 
crops like rubber and palm in different regions are 
found to be more negative than shifting cultivation 
(Vongvisouk et al. 2014, Dressler et al. 2015) as the 
later conserves the traditional biodiversity and culture 
of the region (Tripathi et al. 2017).

This paper aims to analyse the existing infor-
mation on impact of shifting cultivation on soil and 
community attributes and to understand the multi-
faceted impact of climate change on soils character-
istics subjected to shifting cultivation practices. For 
the purpose, a thorough literature review has been 
made on different aspects of shifting cultivation in a 
changing climate using broad databases (e.g., Web of 
Science, Science Direct). further, an in-depth analysis 
was done to analyse the impact of changing climate 
on soil characteristics and presented for developing 
future management strategies for shifting cultivation 
soils under changing climate scenario.

Ecological impact of shifting cultivation on soil 
attributes

A large number of studies have been documented 
on shifting cultivation from different parts of the 
tropical world, investigating the physical, chemical 
and biological changes caused by any form of mat-
ter or energy resulting from activities under various 
components of shifting cultivation and the ecological 
interpretation of the results were presented for various 
community and soil attributes.

Shifting cultivation effects on plant and animal 
diversity

The studies focused on early stages of fallow suc-
cession witnessed the minor effect of shifting culti-
vation on plant diversity (Raharimalala et al. 2010, 
d’Oliveira et al. 2011, Phongoudome et al. 2013), 
however, a significant effect of shifting cultivation on 
diversity indices compared to undisturbed forest has 
been observed by others (Castro-Luna et al. 2011, Do 
et al. 2011, De Wilde et al. 2012, Ding et al. 2012). 
The recovery of species composition and diversity 
depends upon intensity of previous land use, fallow 
age (Ding et al. 2012, Schmook 2010), local climate 
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and biota. For example, full recovery of biodiversity 
of an old forest growth have been reported to require 
60-80 years in certain areas of Africa and Southeast 
Asia (Do et al. 2011, McNicol et al. 2015). Similarly, 
forest structure has been reported to recover slowly 
which takes about 30 to 60 years depending on the 
climate, biota and parent material as compared to 
species diversity (Van Gemerden et al. 2003, Piotto 
et al. 2009), however, structure parameters like stand 
density recover at faster rate in young fallows (Phon-
goudome et al. 2013). A rapid recovery of biomass 
has been observed at the initial stage of fallow which 
slows down with fallow age (Wapongnungsang and 
Tripathi 2019). However, biomass accumulation 
for both above and below ground increases with 
increasing age of fallow (Raharimalala et al. 2012). 
The estimated rate of biomass recovery (above and 
below ground) at early successional stage (ca. 10 
years) ranged between 7.5 and 15.0 Mg ha-1 year-1 
(Kenzo et al. 2010) which attains about 50% biomass 
during a period of 25 years from last cultivation 
(Gehring et al. 2005). Many studies conducted on 
aspects of conservation biology reported negative 
consequences of shifting cultivation on different zoo 
taxa. Highly affected classes of zoo taxa include birds 
followed by insects, nematodes and reptiles (Mukul 
and Herbohn 2016).

Shifting cultivation effects on soil attributes

Impact on physical characteristics

Shifting cultivation impacts the physical character-
istics of the soil (i.e., structure, texture, bulk density, 
porosity, temperature, water holding capacity and 
color (Bhuyan and Laskar 2020). Shifting cultiva-
tion impacts the soil texture through loss of organic 
material, grain size modification and alteration in the 
fine fraction of soil, which negatively affects surface 
runoff and soil erosion, and compacting of topsoil 
(Mataix-Solera et al. 2002, Dass et al. 2011, Ribeiro 
Filho et al. 2013). Similarly, it affects soil structure 
mainly in macroaggregates (> 0.250 mm) (Manpoong 
2019) and their impact can be seen on capacity of soil 
to retain the water and absorb the nutrients (Cooper et 
al. 2020). Soil organic carbon (SOC) is an important 
component of soils and critically influence the soil 
structure. The burning of debris material results in 

combustion of SOC and negatively impacts the soil 
structure by negatively affecting the diversity of soil 
animals (Cerdà 1993, Arunrat et al. 2023). Although, 
the fire decreases the amount of organic matter in 
the soil but increases the amount of mineral carbon 
(black carbon) and carbonated matter with change 
in the proportion of macroaggregates (< 0.250 mm) 
(Santín and Doerr 2016, Berryman et al. 2020). It 
is also observed that soil moisture maintained by 
latent heat of vaporization controls the fire severity 
and decreases its impact on soil physical properties 
(Mataix-Solera et al. 2011). Further, the repeated 
exposure of soil during cultivation and fallow phases 
of intensive shifting cultivation results in increased 
surface runoff, erosion and decrease in water con-
ductivity and rate of infiltration (Gafur et al. 2000). 
It hampers the ensuing recovery of soil and results in 
gradual degradation of soil.

Impact on chemical properties

Shifting cultivation significantly influences various 
soil chemical properties (i.e., pH, cation exchange 
capacity, CEC, the kinetics of micro and macronu-
trients, soil organic matter, SOM and soil organic 
carbon, SOC) (Ribeiro Filho et al. 2015). In shifting 
cultivation, organic matter affects the nutrient cycling 
by regulating its dynamics, which in turn influences 
the CEC and soil pH, and exhibits a positive impact 
on soil fertility during the conversion phase and 
negative consequences under the cultivation phase 
(Arunrat et al. 2021). Unlike soil physical properties, 
chemical properties witness a synergistic effect due to 
the availability of stored macronutrients in the burned 
biomass and an increase in pH with the increase in 
basic cations (Ca, Mg, and K) (Saplalrinliana et al. 
2016). However, varying results have been reported 
about the availability of P and K in the soil, and the 
status of their dynamics after burning is uncertain. 
Although an initial decrease has been recorded in the 
organic matter and volatility of macronutrients like N, 
C, and S, the soil fertility increased markedly (Bruun 
et al. 2009). Burning during the conversion phase 
also impacts levels of organic matter and SOC due to 
their low volatilization temperatures and ultimately 
the soil resilience and fertility (Arunrat et al. 2023).

The cultivation phase affects soil properties both 
positively and negatively. The exposure of soil at the 
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beginning of the cultivation phase poses the problems 
of surface runoff, leaching, erosion, and loss of organ-
ic matter, which results in altered soil pH due to loss 
of bases, increased rate of decomposition leading to 
flow of carbon to the atmosphere, decreased CEC, a 
decline in macronutrients, and decreased soil fertility 
(Døckersmith et al. 1999, Eaton et al. 2009, Ovung et 
al. 2021). Growth and development of crop cultivars 
during the cultivation phase help in the upkeep of 
pH, decrease the loss of soil nutrients by providing 
soil cover, increase the availability of nutrients by 
addition of organic matter, and improve overall soil 
fertility (Singh et al. 2020). However, the inverse 
relationship of cultivation cycle numbers with the 
amounts of bases, the concentration of nutrients, and 
the amount of organic matter impacts the soil acidity, 
availability of soil nutrients, and soil fertility (Ovung 
et al. 2021, Singh et al. 2022).

However, the fallow component helps in re-
instating the early growth conditions of the forest 
ecosystem through the processes related to ecological 
succession (Ovung et al. 2021). Soil exposure during 
the early fallow phase negatively impacts the soil pH 
due to loss of bases, but a fallow period of >10 years 
helps in recovery of soil pH through successional 
stages towards conditions before shifting cultivation 
cycle (Manpoong and Tripathi 2021). Further, shifting 
cultivation in early fallow phase and with short fallow 
cycle negatively impacts the amount of organic matter 
and SOC due to high decomposition rate and flow of 
carbon to atmosphere; low macronutrients availability 
and low CEC caused by low organic matter, and losses 
from surface runoff and leeching (Manpoong and 
Tripathi 2021). Nevertheless, longer fallow phases 
positively influence the dynamics of soil macronu-
trients by providing vegetation cover against surface 
losses of nutrients and increasing organic matter. 
Long fallow period supports improvement in CEC 
through increased availability of bases and helps in 
recovery of soil fertility (Ovung et al. 2021).

Impact on soil biological properties

Shifting cultivation significantly influences the soil 
biological properties including soil microfauna (20 to 
200 μm in size; e.g., algae, bacteria, cyanobacteria, 
myxomycetes, actinomycetes, fungi, and yeasts), 
Mesofauna (0.1 to 2mm in size; arthropods, such as 

mites, collembola, and enchytraeids), macrofauna 
(larger than 2mm in size; e.g., pot-worms, millipedes, 
beetles, beetle larvae, myriapods, centipedes, slugs, 
snails, fly larvae, and spiders), and seed bank (Corsi 
et al. 2012). Usually, increase in soil temperature 
accelerate the process of decomposition and helps in 
building microbial biomass (Lalnunzira and Tripathi 
2018, Singh and Tripathi 2020a, Singh et al. 2021, 
Singh et al. 2022). In shifting cultivation operations, 
the exposure of soil followed by an increase in its 
temperature and drying results in inhibition of the 
activity of soil microfauna. This situation aggravates 
with the use of fire in the burning of biomass and the 
increasing number of cultivation cycles, which impact 
the amount of biomass and diversity of microfauna 
and result in loss of soil fertility as a faction of de-
creased nutrient mineralization (Ovung et al. 2021). 
However, ecological succession under longer fallow 
period increases the activity, biomass and diversity 
of microbial fauna by addition of organic matter in 
the soil. Further, a similar effect of different shifting 
cultivation procedures (e.g., soil exposure, biomass 
burning and fallow period) has been observed on 
meso- and macrofauna (Manpoong and Tripathi 
2021).

In the case of a soil seed bank, soil exposure facil-
itates the germination of seeds through phototropism 
and the establishment of their root system. But, burn-
ing of biomass and increasing numbers of cultivation 
cycles negatively affect the density and diversity of 
seeds mainly for herbaceous plant groups. The long 
fallow period after cultivation favors the density and 
diversity of seed banks through the process of eco-
logical succession (Warrier and Kunhikannan 2022). 
It also helps in the germination of seed banks and 
the establishment of seedlings by improving the soil 
conditions (Warrier and Kunhikannan 2022).

Climate change impact on soil parameters

Climate has an influence on soil attributes and health. 
Global change drivers like increasing atmospheric 
temperatures, rising levels of carbon dioxide (CO2), 
changes in precipitation patterns, extreme climatic 
events (i.e., drought and flood) and deposition of 
atmospheric nitrogen (N) have deep impact on the 
physical, chemical and biological properties of 
soil (French et al. 2009, Porter et al. 2013). Global 
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climate change drivers affect biological functioning 
of soil (Yin et al. 2020), biogeochemical cycles of 
elements like carbon, nitrogen and phosphorus (Del-
gado-Baquerizo et al. 2013, Yuan and Chen 2015), 
availability of plant nutrients (Yuan and Chen, 2015), 
structure and stability of soil against erosive forces 
(Robinson et al. 2019) and spread of plant disease 
(Cramer et al. 2018), and consequently the ecosystem 
functionality and productivity (Wapongnungsang et 
al. 2021). Temperature and rainfall have influence on 
magnitude of SOC pool and its rate of decomposition, 
which can negatively impact the global SOC pool and 
contribute to atmospheric CO2 from prominent soil 
sinks (e.g., Cryosols, Histosols of boreal and arctic 
regions, and peat lands) under positive feedback 
(Martins et al. 2017, Zhang et al. 2020).

Climate change effect on soil architecture

Soil architecture determines the physical properties 
of soil such as porosity (more importantly pore size 
distribution and pore continuity) and bulk density. The 
size affects functional role of pores in soil ecology, 
and their proportion in different pore size affects the 
soil ecological processes. For example, proportion of 
macropores (>75 mm) play key role in regulation of 
water and gases, and the proportion of smaller pores 
(<30-0.2 mm) impacts the storage of water in the 
soil (Kay 1990). Soil hydraulic properties like soil 
moisture characteristics and permeability are largely 
affected by distribution of pore sizes and their conti-
nuity through functions of soil water content–poten-
tial and hydraulic conductivity–water content (Durner 
and Fluhler 2006). Climate change is projected to 
alter soil structure through extreme temperatures and 
changes in the frequency and intensity of precipitation 
episodes. Extreme events such as drought, rainfall, 
and fire may start a variety of processes (e.g., slaking, 
dispersion, mechanical disturbance, and compaction) 
that eventually undermine the structural integrity of 
the soil in hotter, drier places (Mondal 2021). Further, 
it can have an indirect effect on soil structure through 
possible effect on soil biota. Earthworms and termites, 
also known as the “soil engineers,” may profoundly 
affect soil structure and physical qualities, including 
hydraulic conductivity (Cheik et al. 2018). They 
selectively consume mineral and organic particles, 
expelling them as faeces pellets and organo-mineral 
aggregates, undergoing digestive processes that alter 

the colloidal characteristics of organic matter, and 
constructing durable galleries, burrows, and cham-
bers. Future climate change, marked by reduced soil 
stability due to altered soil biota in combination to 
more intense rainstorms, will likely lead surface soil 
degradation, forming seals or crusts. This negatively 
impacts of soil water entry and water use efficiency 
(WUE), particularly under conventional systems like 
shifting cultivation. Soil seals and crusts decrease 
infiltration rates and can trigger erosion by increasing 
runoff (Parihar et al. 2019). Erosion is expected to 
rise under climate change scenarios, even in areas 
with reduced precipitation. This, combined with 
deteriorating soil structure, threatens topsoil loss, 
reduced WUE, lower crop yields, and increased ero-
sion, creating a destructive cycle of land degradation 
(Chan et al. 2010).

Climate change effect on soil biology

Elevated temperature (eT) was observed to have 
impact on soil biological processes like decomposi-
tion and respiration. The decomposition rates found 
to be increasing with higher temperatures, though 
substantial warming (4-8°C) is needed for signifi-
cant effects (Robinson 2009). The warming effects 
can vary depending on factors like soil substratum 
characteristics and plant functional types. It has been 
observed that root rhizosphere respiration is less 
affected by a temperature increase of 3°C than bulk 
soil respiration. Further, the belowground respiration 
can increase significantly during colder periods with 
low plant productivity.

A limited number of studies have explored the 
impact of eT on soil biological communities. Soil 
fauna biomass and diversity are expected to increase 
with global warming, along with alterations in life 
history features (Couˆteaux and Bolger 2000). Micro-
bial communities are more adaptable to eT, and their 
responses depend on historical temperature exposure 
(Waldrop and Firestone 2006). Bacterial communities 
adapt to their mean annual soil temperature, and their 
temperature sensitivity increases with higher mean 
annual temperatures (Rinnan et al. 2009). Laboratory 
experiments also showed adaptive responses in fungal 
and bacterial communities across a wide temperature 
range (5-50°C), particularly above the optimum for 
microbial growth (around 30°C) (Barcenas-Moreno 
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et al. 2009). These adaptations are linked to changes 
in community structure, microbial biomass, enzyme 
activities, and microbial respiration, although sub-
strate availability plays a significant role in elevated 
temperature responses (Andrews et al. 2000). How-
ever, soil organic matter quality plays a crucial role 
in determining response of microbial communities 
to global warming

Climate change effects on soil fertility in ecosystems

Soil pH varies spatially and temporally (Gottlein et 
al. 1999, Gregory and Hinsinger 1999), with daily 
and seasonal fluctuations of up to one pH unit. In 
seasons with low to moderate rainfall, salt accumu-
lation lowers soil pH by pushing H+ ions in the soil 
solution, while wet seasons dilute salts, leading to an 
increase in soil pH (Rengel 2002). These short-term 
changes differ from long-term acidification caused by 
increased rainfall leaching basic cations over decades 
(Tang and Rengel 2003). Soil acidification can result 
from increased biomass production caused by rising 
temperatures and elevated CO2 levels. Plant material 
contains excess cations that balance organic molecule 
charges by releasing H+ ions into the soil. When this 
material decomposes in-situ, it returns alkalinity to 
the soil, neutralizing acidity. However, in managed 
ecosystems like shifting cultivation, biomass removal 
as harvest leaves non-neutralized soil acidity, creat-
ing unbalanced carbon and nitrogen cycles. Climate 
change has also been recognized as a potential driver 
of alterations in forest species composition (Kotroczo 
et al. 2008), resulting in decreased total leaf litter 
production. This shift could have repercussions on 
the structure and functionality of microbial commu-
nities. Intriguingly, a mere 2°C rise in average soil 
temperature has been linked to a 22% increase in soil 
respiration. It is worth noting that this impact can be 
even more pronounced in modified land use systems, 
such as shifting cultivation (Lungmuana et al. 2017).

Soil organic carbon (SOC) stocks are influenced 
by the balance between carbon inputs and outputs 
(Lalnunzira and Tripathi 2018). Inputs primarily come 
from plant biomass, manure, and microbial biomass, 
while outputs are mainly in the form of CO2 emis-
sions, with minor contributions from leaching and 
runoff of dissolved and particulate organic carbon 
(POC), and in hydromorphic environments, CH4 emis-

sions. Climate change influences both the inputs and 
outputs of soil organic carbon. SOC decomposition 
depends on temperature and adheres to the Arrhenius 
equation, where temperature dictates the reaction rate 
constant (Arrhenius 1889). The temperature sensitiv-
ity of SOC decomposition is also explained through 
Q10 functions, showing how reaction rates change 
with temperature (Davidson and Janssens 2006). 
The more recalcitrant SOC pool is less reactive to 
temperature than the labile carbon pool in the soil that 
exhibit slower turnover rate (Gruber et al. 2004, Jones 
et al. 2005, Manpoong et al. 2020, Hauchhum and 
Tripathi 2019). Further, substrate availability during 
SOC degradation, shifts due to factors like spatial 
variation, inaccessibility, and chemical resistance, 
affecting temperature sensitivity (Singh et al. 2022). 
Since, rising temperatures can limit substrate supply 
and, consequently, SOC decomposition and affect the 
carbon cycle. However, varying temperature sensi-
tivity among SOC pools is mainly due to differences 
in substrate supply, which depends on number of soil 
attributes (e.g., substrate quality, aggregation, water 
availability, nutrients, particularly nitrogen, N). The 
reliable estimates of these processes will be crucial 
in changing climate scenarios which regulate sub-
strate supply to enzyme sites in soil. Further, the soil 
C stocks is also affected by factors like forest fires 
and their intensity, precipitation, CO2 fertilization, 
N deposition, and soil management practices, which 
can help in estimating changes in soil C stocks due 
to climate change (Tripathi et al. 2008, Tripathi et al. 
2012, Ao et al. 2023).

Further, the intricate relationship between tem-
perature fluctuations and N deposition can result in 
unforeseen consequences for carbon sequestration 
and soil N2O emissions due to complex interactions 
(Singh and Tripathi 2000). The projected doubling of 
atmospheric CO2 levels by 2100 (Forster et al. 2007) 
from the current ambient level is anticipated to further 
alter the N cycle in terrestrial ecosystems, which will 
pose challenges for effective management of terres-
trial ecosystems (Gruber and Galloway 2008) under 
N deposition scenario (Tripathi and Singh 2001). The 
warming trend typically enhances N mineralization 
and nitrification but is subject to influence by soil 
moisture levels, adding to the complexity of the situ-
ation (Groffman et al. 2009). A comprehensive grasp 
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of the dynamics involving soil solution inorganic 
nitrogen (NH4

+ + NO3
-) is vital for efficient fertilizer 

management. Temperature variations can impact 
these concentrations, affecting plant uptake and the 
potential for leaching losses (Verburg 2005). An 
analysis suggests that striving to significantly enhance 
global CO2 sequestration through increased N depo-
sition may not yield substantial benefits (Reay et al. 
2008). While increased N emissions could potentially 
lead to extra C sequestration in forests, the resulting 
N2O emissions might offset these advantages.

Soil characteristics under shifting cultivation in a 
changing climate scenario

Shifting agriculture exerts significant effects on the 
physical attributes of the soil by strongly altering the 
intricate relations of biological and physical processes 
(Wapongnungsang et al. 2020, Wapongnungsang et 
al. 2021). One noteworthy alteration is the adjustment 
of soil texture, primarily resulting from material loss 
and changes in grain sizes, especially in the fine soil 
particle fraction (Wapongnungsang and Tripathi 
2019). Importantly, these modifications to soil struc-
ture may be further intensified by the consequences 
of climate change, which are expected to exert a 
substantial impact on soil characteristics due to ex-
treme temperatures and shifts in precipitation patterns 
(Tripathi et al. 2017, Wapongnungsang et al. 2020).

Soil macrofauna play a crucial role in influenc-
ing soil structure and physical characteristics. Their 
creation of durable galleries, burrows, and chambers 
within the soil matrix significantly impacts hydrau-
lic conductivity and soil stability, enhancing the 
resilience of soil aggregate structure (Bottinelli et 
al. 2015). However, engaging in shifting cultivation 
practices may expose soil, subsequently leading to 
elevated temperatures and increased dryness. This, 
in turn, can have a detrimental effect on the activity 
of soil microfauna, inhibiting their normal func-
tioning. This situation is compounded by climate 
change, which has the potential to modify the devel-
opment and functioning of these crucial organisms 
by impacting their physiological processes through 
changes in soil temperature and moisture conditions 
(Mondal 2021). The reduced activity and limited de-
velopment of these organisms may result in adverse 
consequences on soil health that include heightened 

surface runoff and erosion and compaction of topsoil. 
These alterations collectively lead to the deterioration 
of soil quality and diminish its capacity to efficiently 
retain water and nutrients. Moreover, the use of fire 
in biomass combustion and the heightened frequency 
of cropping cycles due reduced fallow length might 
exacerbate the problem, affecting both the quantity of 
biomass and the variety of microfauna. Consequently, 
a decline in nutrient mineralization might lead to a 
reduction in soil fertility (Sofo et al. 2020).

Soil organic carbon (SOC) stocks play a crucial 
role in maintaining soil health, subject to the impact 
of the balance between carbon inputs and outputs. 
Inputs primarily come from sources such as plant 
biomass, manure, and microbial biomass (Monsang 
et al. 2023). On the other hand, the primary outputs 
consist mostly of carbon dioxide (CO2) emissions, 
accompanied by minimal contributions of dissolved 
and particulate organic carbon from the leaching and 
runoff losses (Chaplot et al. 2019). Further, methane 
(CH4) emissions also contribute to the dynamics of 
hydromorphic settings. In the context of shifting agri-
culture, especially during the initial fallow phase and 
with brief fallow cycles, there is an adverse impact 
on the quantity of organic matter and soil organic 
carbon (Nath et al. 2016). The primary cause of this 
phenomenon can be attributed to the rapid pace of 
decomposition and the subsequent release of carbon 
into the Earth’s atmosphere. Moreover, it should be 
noted that there is a likeliness of reduced accessibility 
of macronutrients with a decrease in cation exchange 
capacity (CEC) due to low organic matter levels 
(Ovung et al. 2021). The issue is exacerbated by 
additional losses of soil carbon and nutrients through 
surface runoff and leaching. These issues may be 
further intensified by increased temperatures, as they 
impact soil biological activities such as breakdown 
and respiration. Consequently, this might result in 
a decrease in soil carbon stores when short fallow 
periods are used (Tripathi et al. 2017).

Soil pH and cation exchange capacity (CEC) are 
additional significant factors to consider concerning 
soil affected by shifting agriculture (Tripathi et al. 
2017). The impact of organic matter dynamics in the 
context of shifting agriculture may have implications 
for nutrient cycle processes, ultimately resulting in 
alterations to soil pH levels. The soil pH may be raised 
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by the presence of burnt biomass due to an increase 
in basic cations, including calcium (Ca), magnesium 
(Mg), and potassium (K). Nevertheless, climate 
change has the potential to have adverse impacts on 
soil pH, primarily due to changes in precipitation 
patterns and the subsequent leaching of basic cations 
(Rengel 2002).

Temperature and moisture play crucial roles 
in influencing soil microbial populations and their 
activity, which in turn significantly affects nutrient 
cycling and carbon storage mechanisms (Momin et 
al. 2021, Singh and Tripathi 2020b). In the context 
of shifting agriculture characterized by short fallow 
cycles, temperature may have a dual impact on mi-
croorganisms. On one side of the argument, higher 
temperatures have the potential to have a beneficial 
influence on the development and activity of organ-
isms, resulting in heightened rates of respiration and 
decomposition (Singh and Tripathi 2020b). Never-
theless, in situations characterized by diminished 
moisture levels and restricted substrate availability, 
these impacts may become detrimental to the overall 
health and well-being of the soil.

CONCLUSION

In conclusion, the practice of shifting cultivation has 
a significant impact on the physical and chemical 
properties of soil, which may adversely affect soil 
fertility and overall soil health. Such alterations when 
combined with the challenges presented by climate 
change (like extreme temperatures and fluctuations 
in precipitation), might further intensify adverse 
effects on soil properties. This will adversely affect 
the crop productivity and yield, and pose a problem 
of food security for the local populations dependent 
on shifting agriculture. Hence, understanding these 
relationships is crucial for the implementation of 
sustainable land management strategies to promote 
food security options to tribal populations by con-
serving soil resources under changing environmental 
conditions.
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