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ABSTRACT 

The base material of this study comprises of 104 
tomato accessions including local landraces, varieties 
and germplasm collections. The collected tomato ac-
cessions were evaluated using 13 quantitative traits by 
Principal Component Analysis (PCA) and Hierarchial 
clustering. PCA was done to quantify diversity among 
the germplasm accessions and also the contribution of 
individual traits towards diversity. In our study, only 
the first four (PC1, PC2, PC3 and PC4) of the thirteen 
principal components yielded eigen value more than 
one indicating the greater influence of identified traits 
under study. The first six PCs accounts for 84% of 
variability whereas, PC1 exhibited 41% of total vari-
ability. Cluster analysis aids to classify the genotypes 
based on the grouping pattern of the accessions under 
evaluation. According to the dendrogram obtained, 
cluster analysis grouped 104 tomato accessions into 
two significant clusters. The first cluster consists of 
16 genotypes whereas, the second cluster consists of 
88 genotypes. Among the genotypes used in this study 

EC617055, EC617061, EC638302, Periakulam local 
and EC631390 were found to be best performing in 
terms of yield and quality. These accessions can be 
used as a base material in future breeding programs.

Keywords  Clustering, Diversity, Germplasm, Prin-
cipal component analysis, Variability.

INTRODUCTION
 
Tomato belongs to the diverse Solanaceae family 
which includes more than three thousand species. 
In the early sixteenth century, they were considered 
ornamental plants  (Bauchet and Causse 2012), but 
within 200 years, they became a precious crop with 
greater social and economic values. Domesticated to-
mato (Solanum lycopersicum) and its 12 wild relatives 
are the members of Lycopersicon clade (Kamenetzky 
et al. 2010). They are natives of the Andean region. 
The members of this clade were found in wide range 
of ecological conditions which contributed towards 
diversity of wild species. This clade also serves as 
a pre-eminent model in species variation studies 
and genetic studies for ripening process (Klee and 
Giovannoni 2011). Solanum lycopersicum is cosmop-
olite in nature and its spread throughout the world. 

Yield increment has been the major objective for 
any breeding program. As a result of rigorous breed-
ing programs, development of high yielding geneti-
cally uniform varieties gained attention during early 
20th century (Ceccarelli 2012). Artificial selection led 
to reduction in genetic diversity. There was a huge 
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relegation of landraces which created a greater void in 
the genetic diversity of tomato (Farinon et al. 2022). 
But in modern breeding program, the main objective 
is to get back to the crop wild relatives and ancestors 
to employ the diversity lost during domestication (Gur 
and Zamir 2004). 

Success of a crop improvement program relies 
on the source of the parental material. Wild relatives 
and germplasm accessions serves as a base material 
for any breeding program (Casañas et al. 2017). 
Crosses between wild and cultivated types generated 
novel phenotypic diversity. In tomato, they are the 
source for resilience to varied environmental stress 
conditions, low input responsiveness, distinctive 
nutraceutical, nutritional, organoleptic, cultural and 
historical traits (Ramirez-Villegas et al. 2022). Due 
to this uniqueness, tomato heirlooms and landraces 
are in breeder’s spotlight now and efforts have been 
taken to breed flavorsome and nutritious tomato 
fruits. Consequently, studies aiming to characterize 
tomato germplasm accessions are increasingly gain-
ing attention (Athinodorou et al. 2021). The present 
investigation is aimed to assess genetic diversity in 
tomato germplasm accessions.

MATERIALS AND METHODS

One hundred four tomato accessions (including germ-
plasm accessions collected from Gene Bank, National 
Bureau of Plant Genetic Resources, local landraces 
and a few varieties) served as a base material for this 
investigation. The acquired seeds were sown in pro-
trays filled with an admixture of organically enriched 
compost and topsoil. Nursery management practices 
were carried out, which aided in the production of 
vibrant seedlings. Seedlings were transplanted on 
the 30th day after sowing. An augmented design with 
fifteen blocks and three controls was formed for mor-
phological assessment. Seedlings were planted with 
a spacing of 60×45 at the plant breeding farm, De-
partment of Plant Breeding and Genetics, Annamalai 
University, Chidambaram, from January to May 2022. 

All standard horticultural practices for tomato 
production were taken up to raise the crop. Thirteen 
traits, viz., plant height, thickness of pericarp, size of 
core, pedicel length, pedicel scar, fruit length, fruit 

width, plant yield, fruit weight, days to fifty percent 
flowering, number of locules, number of days to first 
picking and wilt susceptibility were observed from 
five randomly selected plants in each accession based 
on the tomato descriptors IPGRI (1996). In order to 
categorize variation and the contribution of traits 
towards total variation, the collected phenotypic data 
is subjected to Principal Component Analysis and Hi-
erarchical cluster analysis following Ward’s method 
was done using R studio software version (v1.4.1717) 
to find the association among accessions. The PCA–
biplot was obtained using “ggplot2” (Wickham et al. 
2016), “Factoextra” (Kassambara and Mundt 2017) 
and “FactomineR” (Lê et al. 2008) packages of R. 

RESULTS AND DISCUSSION

The Principal Component Analysis is a powerful tool 
to identify minimum components which explains 
maximum variability (Shoba et al. 2019). It also 
quantifies the significance of each dimensions and 
displays the variability in a data set visually appeal-
ing (Lakshmi et al. 2022). Practically, PCA is a vital 
tool used to choose parental lines for hybridization 
(Ahmadizadeh and Felenji 2011). In our study, 
thirteen traits were subjected to PCA and thirteen 
principal components have been obtained. (Table 1) 
presents the Eigen value and percentage of variance 
explained by each component. Principal Components 
having Eigen values more than one and percentage of 
variance more than four can be considered as main 

Table 1. Eigen value and percentage of variance.
 
Principal  Eigen value Percentage    Cumulative
component  of variance    percentage of
    variance

PC1 5.332 41.019 41.019
PC2 1.665 12.809 53.828
PC3 1.253 9.636 63.464
PC4 1.112 8.552 72.016
PC5 0.887 6.822 78.838
PC6 0.692 5.321 84.159
PC7 0.622 4.781 88.94
PC8 0.438 3.366 92.306
PC9 0.399 3.068 95.374
PC10 0.296 2.278 97.652
PC11 0.179 1.378 99.03
PC12 0.126 0.97 100
PC13 0 0 100
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PC (Sao et al. 2019). PCs with Eigen value greater 
than one can be selected (Shoba et al. 2019). Only 
the first four (PC1, PC2, PC3 and PC4) of the thir-
teen principal components yielded Eigen value more 
than one indicating the greater influence of identified 
traits in the phenotype of the genotypes under study 
(Nachimuthu et al. 2014). The scree plot (Fig.1) aids 
in categorizing variances for the first ten principal 

component axes. The first six PCs accounts for 84% 
of variability whereas, PC1 exhibited 41% of total 
variability. The factor loadings explained by first 
five principal components are indicated in (Table 2).
  

In the present study, fruit length, fruit width, 
plant yield and fruit weight were the contributing 
traits for PC1. Higher the coefficient, either positive 
or negative the discrimination of accessions will be 
more effective. In PC1, yield and yield attributing 
traits like fruit length, fruit width, plant yield and fruit 
weight contributed more towards the total variation. 
Similar pattern of contribution by yield attribut-
ing traits in PC1 was also reported by Sanni et al. 
(2012), Ojha et al. (2017). Many authors (Mahesha 
et al. 2006, Prashanth et al. 2008, Ene et al. 2022) 
reported the importance of traits like fruit weight, 
fruit yield per plant in contributing towards genetic 
diversity in tomato. They also suggested that these 
traits have wider scope in tomato yield enhancement 
by direct selection. Desirable traits coming together in 
single principal component has the tendency to cling 
together which offers chance for their utilization in 
crop breeding.

Plant height, days to fifty percent flowering and 
number of days to first picking exhibited negative 

Table 2. Factor loadings explained by first five principal compo-
nents. PH – Plant height, TP - Thickness of pericarp, SC - Size of 
core, PL - Pedicel length, PS - Pedicel scar, FL - Fruit length, FW - 
Fruit width, PY - Plant yield, FW - Fruit weight, DFF - Days to fifty 
percent flowering, NOL - Number of locules, NODFP - Number 
of days to first picking, WS - Wilt susceptibility.
               
Variables  PC1 PC2 PC3 PC4 PC5

PH -0.003 0.242 -0.692 0.173 -0.068
TP 0.244 -0.091 0.22 0.501 0.270
SC 0.297 -0.211 -0.011 0.052 -0.305
PL 0.208 -0.341 -0.233 0.200 0.454
PS 0.230 -0.216 -0.405 0.144 0.270
FL 0.353 0.182 0.223 0.201 0.057
FW 0.377 -0.068 0.160 -0.035 -0.170
PY 0.375 -0.054 0.007 -0.058 -0.195
FWT 0.370 -0.004 0.188 -0.038 -0.154
DFF -0.303 -0.457 0.131 0.247 -0.125
NOL 0.160 -0.445 -0.310 -0.292 -0.400
NODFP -0.303 -0.457 0.131 0.247 -0.125
WS 0.060 -0.263 0.113 -0.635 0.515

Fig. 1. Scree plot showing Eigen value variation.
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contribution in PC1. Nearly 54% of variation was 
explained by PC1 and PC2 which indicates a strong 
relationship between the traits under study (Laksh-
mi et al. 2022). In PC2 most of the traits displayed 
negative contribution except plant height and fruit 
length. Plant height, size of the core, pedicel length, 
pedicel scar and number of locules exhibited positive 
contribution whereas, the other traits showed neg-
ative contribution towards PC3. The biplot of PC1 
and PC2 clearly depicts the interaction among traits 
and also with each genotype (Fig. 2). Vector length 
depicts the contribution of various traits towards total 
divergence. Lengthier the vector greater will be its 
contribution towards diversity. In this study, traits like 
days to fifty percent flowering and number of days to 
first picking showed long vector length indicating its 
higher contribution towards diversity followed by the 
yield and yield attributing traits such as fruit length, 
fruit width, fruit weight.

Angle between the trait vectors decides the direc-
tion of correlation between the traits (Bhargava et al. 
2021). The genotypes that are present in the opposite 
direction of the yield and yield attributing vectors are 
considered as poor performers (Sao et al. 2019). In 
this present investigation, out of thirteen traits under 
study days to fifty percent flowering and number of 
days to first picking showed negative correlation 
towards plant yield. The genotypes that are present 

along in the same quadrant of the yield attributing trait 
vectors are considered as good yielders and the gen-
otypes that are located in opposite direction to these 
vectors can be considered as inferior genotypes for 
these traits (Lakshmi et al. 2022). In our study, most 
of the genotypes present in the left side of the biplot 
is overlapping and this indicates the less variability 
between the genotypes (Ojha et al. 2017). 

Hierarchial clustering

Cluster analysis aids to classify the genotypes based 
on the grouping pattern of the accessions under 
evaluation (Nankar et al. 2020). Hierarchial cluster 
analysis using thirteen quantitative traits is presented 
in (Fig. 3). According to the dendrogram obtained, 
cluster analysis grouped 104 tomato accessions into 
two significant clusters. The first cluster consists of 
16 genotypes whereas, the second cluster consists of 
88 genotypes. The second cluster is the largest. The 
members of cluster I are high yielding with high mean 
values for average fruit weight and individual plant 
yield. In similar studies with Solanum surattense by 
Dheebisha et al. (2023) and in tomato by Evgenidis et 
al. (2011), genotypes with high yield and yield com-
ponents aggregated in a single cluster, this result is in 
consonance with the clustering pattern of genotypes 
in the present study. Cluster I have two subclusters, 
the first subgroup IA has 15 genotypes and the next 

Fig. 2. Distribution of genotypes across two components.
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subgroup IB has only one genotype (EC617055) and 
it is a solitary subcluster. This genotype is high yielder 
and ranks first in average fruit weight (210 g) among 
the 104 accessions studied. This cluster contains 
genotypes with better agronomic characteristics and 
yield performances hence, selection will be effective 
when yield is the target.

Cluster II has two subgroups, the first subgroup 
IIA has 32 genotypes, whereas the next subgroup is 
the largest and has 56 genotypes in it. Cluster IIA 
comprises of genotypes producing small sized fruits, 
most of the members of this cluster are cherry type. In 
this study, one genotype belonging to Solanum pimp-
inellifolium is included and this genotype is grouped 
along with other cherry type tomatoes in this cluster. 
They are accommodated in the same cluster because 
cherry tomato types where the genetic admixture of 

cultivated accessions and S. pimpinellifolium  (Peralta 
and Spooner 2006). Cluster IIB comprises of geno-
types with medium sized fruits and low to medium 
yielding ability. In this study, the grouping pattern of 
tomato accessions is based on their agronomic and 
yield performances. Grouping pattern is not in the 
basis of the source, origin or the geographical distri-
bution as the accessions were distributed randomly 
in the clusters. Similar results were also reported by 
Ene et al. (2022) in tomato. This pattern of distribu-
tion is the sign for broad genetic base of the tomato 
accessions (Vargas et al. 2020). 

CONCLUSION

Multivariate analysis aids in quantifying diversity 
among the germplasm accessions and also the con-
tribution of individual traits towards diversity. PCA 

Fig. 3. Hierarchial clustering of 104 genotypes.
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helps in ranking the genotypes based on the PC scores. 
EC617055, EC617061, EC638302, Periakulam local 
and EC631390 are best performing genotypes in 
terms of yield and quality. These accessions can be 
used as a base material in future breeding programs. 
From the present study, it is clearly evident that clus-
ter analysis is an effective and efficient tool to assort 
genotypes based on their yield performances. It also 
provides an authentic foundation in selecting base 
materials for breeding programs.
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