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ABSTRACT

ARIMA model and prediction of temperature us-
ing various techniques with the help of temporal 
techniques. The ARIMA model was developed for 
the prediction of temperature patterns using SPSS 
software. The analysis was carried out for diagnos-
tic, calibration, and predicting of temperature for 
Western Haryana (Hisar and Bhiwani). This study 
indicates that the best stochastic time series model 
for temperature analysis in Hisar and Bhiwani is 
ARIMA (0,01) and (0,1,1) that predicted values 
are well-fitted through the original data with the 
lower and upper limits containing majorities of the 

temperature original data. Forecasting accuracy of 
ARIMA model using R2 value for temperature in 
Hisar region (0.97) and in Bhiwani region (0.99). The 
ARIMA models are therefore adequate to be used for 
predicting monthly temperature in Hisar and Bhiwani. 
Forecasting of temperature helps in the planning and 
decision-making process and it gives an insight of the 
future uncertainty using the past and current scenarios 
of weather parameter.
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INTRODUCTION

On a worldwide level, numerous attempts have 
been made to predict the behavioral pattern using 
suitable techniques. In the last few decades, time 
series forecasting has received tremendous interest 
by researchers. Conventionally, the researchers have 
employed traditional methods of time series analysis, 
modeling, and forecasting, e.g., Box-Jenkins meth-
ods of autoregressive (AR), auto-regressive moving 
average (ARMA), autoregressive integrated moving 
average (ARIMA), autoregressive moving average 
with exogenous inputs (ARMAX). The convention-
al time series modeling methods have served the 
scientific community for a long time; though, they 
provide only reasonable accuracy and suffer from the 
stationary and linear assumptions (Patel et al. 2014).

Climate change seems to be one of the most 
important issues in the recent two decades and tem-
perature has been identified as one of the key ele-
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ments that can indicate climate change (Tanusree and 
Kishore 2012). It is widely believed that the changing 
temperature due to global warming is permanently 
changing the entire Earth’s climate. People perceive 
the impacts of global warming differently with some 
taking the necessary precautions to help reduce the 
rates of the rising temperature. In the past century 
alone, studies have shown that the globe’s mean 
temperature has risen between 0.4°C and 0.8 °C. Ac-
cording to a study by IPCC (2007), the temperatures 
could rise between 1.4°C and 5.8 °C by the end of the 
21st century. This increase in temperature may seem 
to be minute but the impacts are great. Increases in 
temperatures are likely to lead to a global increase 
in drought conditions, decreased water supplies due 
to evapotranspiration and an increase in urban and 
agricultural demand.

Generally, a time series {x (t), t = 0,1, 2,...} is 
assumed to follow a certain probability model which 
describes the joint distribution of the random vari-
able xt. The mathematical expression describing the 
probability structure of a time series is termed a sto-
chastic process (Adhikari and Agrawal 2013). They 
differentiate the series, so the seasonal differenced 
series removes the trend effect and the series becomes 
stationary. The SARIMA (Seasonal Autoregressive 
Integrated Moving Average) models for sub-series 
also show the monthly average temperature has a 
stable structure. The forecasting results show the SA-
RIMA models fit the data well (Li and Moller 2009).

MATERIALS AND METHODS

Temperature data of 31 years were used for develop-
ing ARIMA models. Data were used for diagnostic, 
calibration, and forecasting (1985-2016) of average 
monthly temperature. The temperature data was 
collected from Climatic Research Unit (CRU), Uni-
versity of East Anglia (https://www.uea.ac.uk) on a 
grid basis.

The statistical software used for analysis is SPSS 
(Statistical Package for the Social Sciences). ARI-
MA (Auto-Regressive Integrated Moving Average) 
model is a type of statistical model that can be used 
to analyze and forecast time series data. This model 
was developed by using SPSS software adopting 

procedure that are discussed above.

Location

Haryana is a landlocked Indian state in the north. 
Between 27°39’ and 30°35’ N latitude, and 74°28’ and 
77°36’ E longitude, it is located. Haryana’s elevation 
ranges from 700 to 3600 feet (200 to 1200 meters) 
above sea level. Hisar is located in western Haryana at 
29.09°N 75.43°E. It is located at an average elevation 
of 215 meters (705 feet) above sea level. Bhiwani has 
an average elevation of 225 meters and is located at 
28.78°N 76.13°E.

Climate

Haryana is hot in the summer and cool in the winter 
with an average rainfall of 354.5 mm, the climate is 
arid to semi-arid. The climate of Hisar is character-
ized by dryness, temperature fluctuations, and a lack 
of rainfall. During the summer, the highest daytime 
temperature is between 40 and 46 °C. The average 
annual maximum and minimum temperatures are 32.3 
°C and 15.4 °C, respectively. The relative humidity 
ranges from 5% to 100%. The average annual rain-
fall is roughly 429 mm, with July and August being 
the wettest months. The local steppe climate has an 
impact on Bhiwani. The temperature in the Bhiwani 
District varies from 2 °C to 45°C. The average tem-
perature in Bhiwani is 25.2 °C.

Model used

The Box-Jenkins method

This study follows the Box-Jenkins methodology for 
modelling, steps involved: 

a) Model identification- Box and Jenkins 1976.
b) Estimation of the model parameters- Chatfield 
     2004, Box and Jenkins 1976. 
c) Diagnostic checking- Anderson 1977.
d) Forecasting.

Conceptual Framework

It is a scheme of concepts that the researcher op-
erationalizes in order to achieve the set objectives. 
The following conceptual framework proposed is 
considered in this study. 
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Model types

The autoregressive models

An autoregressive model, AR (p), is a model in which 
a linear combination of previous measurements of the 
variable and a random error term with a constant term 
are used to forecasts.

Moving average models

A MA (q) model uses past errors to predict the vari-
able of interest. The general algebraic representation 
of a moving average of order q, MA (q). 

The residuals are assumed to follow a normal 
distribution. Thus a MA model is a linear regression 
of the current values of the time series against the 
residuals of one or more prior observations (Adhikari 
and Agrawal 2013).

Autoregressive moving average models

The AR model includes the lagged terms on the time 
series itself while the MA model includes lagged 
terms on the noise or residuals. If the AR and MA 
models are effectively combined together, we form 
the ARMA model. Thus ARMA (p, q), where p is 
the autoregressive order and q the moving average 
order. It is important to note that the ARMA models 
can only be used when time series data is stationary.

Autoregressive inntegrated moving average 
models
In practice, many time series are always non-station-

ary but ARMA models are therefore inadequate to 
effectively describe non-stationary time series which 
are more frequently encountered in actual practice. 
Box and Jenkins (1976) proposed the ARIMA mod-
el which is a generalization of an ARMA model to 
include the case of non- stationarity. When using the 
ARIMA model, finite differencing is applied to the 
data to remove non- stationarity.  

The model is referred to as an ARIMA (p, d, q) and 
is represented algebraically as:

ɸ(B) (1-B) dXt=θ (B)ɛt , ɛt ~ WN (0, s2)

Where: 

i. WN stands for white noise.
ii. p represents non-seasonal AR order, d represents 
non-seasonal differencing, and q represents non-sea-
sonal MA order. 

Generally, d=1 is enough in most cases. If d=0, the 
model reduces to an ARMA (p, q) model. 

In case a series has both seasonal and non-sea-
sonal behaviors then the ARIMA model may mislead 
to the selection of a wrong order for non-seasonal 
components because it may not be able to capture the 
behavior along the seasonal part of the series.

Where:
 
p represents non-seasonal AR order, 
P represents seasonal AR order,  
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d represents non-seasonal differencing, 
D represents seasonal differencing, 
q represents non-seasonal MA order, 
Q represents seasonal MA order, 
S represents seasonal order (for monthly data S = 12)
B is the backward shift operator (Bkyt = y t -k), 
yt represents time series data at period t, and
ɛt is the random shock (white noise error). 

In this model, non-stationarity is removed from 
the series using the appropriate order of seasonal 
differencing. A first-order seasonal difference is a dif-
ference between an observation and the corresponding 
observation from the previous year.

Non-seasonal differencing is also necessary if 
the trend is present in the data. Often a first non-sea-
sonal difference will “detrend” the data (Abdul-Aziz 
et al. 2013). 

Model identification

Stationarity analysis

Stationarity is achieved when a time series has a 
constant mean, variance, and autocorrelation over 
time. Stationarity is a necessary and sufficient con-
dition for ARIMA models before performing any 
analysis. Plotting the series and its autocorrelation is 
the standard way to check for non-stationarity. The 
time series graph can be examined through time to 
determine whether it has any trend or variability over 
time. For a non-stationary series, the autocorrelation 
function decays slowly. 

For a series characterized by trend, seasonality, 
or any other non-stationary patterns, we analyze the 
series after differencing. In order to obtain stationary 
data from a first-order non-stationarity, we first sieve 
the observations with ARIMA models by differencing 
them d times, Using Δdyt instead of yt as the time 
series. 

This is normally done with the transformation

                       Δ y t= y t y t -1                            (1)
For the non-seasonal part the above equation results 
to the values 0,1,2... d = and for the seasonal part D 
= 0,1,2.... 

Sometimes a series might need differencing 
more than once or to be differenced at lags which 
are greater than one period. In case of a second order 
non-stationarity, a simple transformation like the log 
transformation could be helpful.

Autocorrelation and Partial Autocorrelation Functions 
(ACF and PACF)

When using the ARIMA models, model specification 
and selection is a crucial step of the analysis process. 
A proper model for the series is identified by analyz-
ing the ACF and PACF. 

They reflect how the observations in a time series 
are related to each other. It is useful that the ACF and 
PACF are plotted against consecutive time lags for 
the purposes of modelling and forecasting. The order 
of the AR and MA are determined by these plots. 

For a time series, the auto-covariance function ACVF 
at lag k is defined as: 

                                    n –k
                     ck  =1/n Σt =1 (xt –μ)(xt–k– μ)            (1)
 
If xt is a stationary process with mean μ, the auto-
correlation of order k is simply the relation between 
xt and xt-k. The ACF estimate for the sample at lag 
k is thus defined as
                                          
                       E{(xt – μ) (xt –1 –μ )}
                pk = ––––––––––––––––                   (2)
                           E {(xt– μ)2 }         
The PACF of a stationary process, xt, denoted ɸhh is
          ɸ11= corr (xt+1, xt) = p(1)                     (3)
                                    ^         ^     ^        And ɸhh =corr (x t+h – xt+h , xt –xt) h ≥2                    (4)
        ^           ^       ^ xt+h–xt+h and xt –xt  are not correlated  with {xt+1.....
                                                                      xt+1 -h}-

The ACF and PACF plots are used to identify the 
terms of the SARIMA model. The non-seasonal 
terms are identified from the early lags 1, 2, 3, …. 
Non-seasonal MA terms are indicated by spikes in 
the ACF at low lags while non-seasonal AR terms 
are indicated by spikes in the PACF at low lags. The 
seasonal terms are examined from the patterns across 
lags that are multiples of S.
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For monthly data, we look at lags 12, 24, 36 and 
so on (probably won’t need to look at much more than 
the first two or three seasonal multiples). The ACF 
and PACF are judged at the seasonal lags in the same 
way it is done for the earlier lags.

Function or partial autocorrelation function is 
cutting off or tailing off (Shumway and Stoffer 2006). 
Models that look different can also be very similar. 
Precision should therefore not be a major concern at 
this stage of model fitting.

Forecasting

The selected model does not always necessarily pro-
vide the best forecasting therefore it is important to 
apply other tests such as MAE, MSE and MAPE to 
confirm the forecasting accuracy of the model. 

Forecasting an ARMA process with mean µx , m-step-
ahead forecasts can be defined as 
                  ~                  
                Xn+m = μx +Σ∞

j=m   Ψj  wn+m–j                            (1)
                                     
The precision of the forecast is assessed with a pre-
diction interval of the form 
                         n 
                        Xn+m ± Ca  √Pm

n+m                         (2)
                        

 
                

  
                    

  2
Where C a FF is identified such that the desired degree 
                2

of confidence is achieved. Suppose it is Gaussian 
process, then having C a = 2 will yields approximately
                                              2

95% prediction interval for Xn+m-

Mean absolute error

MAE = ½ ∑n     et                                                (3)
                                  t =1

Where et= Xt - Ft is the error term 
Xt is the actual observation for time period t, Ft is 
the forecast value for period t and n is the number of 
forecasting values (Spyros et al. 1998).

Mean square error

MSE = ½ ∑n     et
2                                               (4)

                                  t =1                                             

Fig. 1. Time plots of temperature changes for Hisar. 

Fig. 2. Time plots of temperature changes for Bhiwani.

Where et= Xt - Ft is the error term and Xt is the actual 
observation for time period t, Ft is the forecast value 
for period t and n is the number of forecasting values 
(Spyros et al. 1998).

Mean absolutes percent error

MSE = ½ ∑n     PEt                                        (5)
                                  t =1

The mean absolute percentage error is the mean or 
average of the sum of all the percentage errors for a 
given data set taken without regard to sign (That is, 
their absolute values are summed and the average 
computed). It is one measure of accuracy commonly 
used in quantitative methods of forecasting (Spyros 
et al. 1998).

RESULTS AND DISCUSSION

The statistical parameters of input data were estimated 
such as, the maximum, minimum, mean, standard 
error of data sets and stationarity of data series 
was examined using ljung-box test analysis. The 
stationarity of data series was also checked through 
examining the time series plot. Stationary means the 
data fluctuate around a constant mean. The various 
plots of temperature viz., Observed temperature, fitted 
temperature, and predicted temperatures are shown 
in Figs. 1– 6) for Hisar and Bhiwani (1985-2025).
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Fig. 3. Observed and fitted values of temperature series for Hisar..

Fig. 4. Observed and fitted values of temperature series for 
Bhiwani.

Fig. 5. Observed and forecast values of temperature series for Hisar.

Fig. 6. Observed and forecast values of temperature series for 
Bhiwani.

Monthly temperature analysis

Summary of temperature are shown for Hisar as 
well as for Bhiwani from observed data of Hisar and 
Bhiwani (Figs.1–2). The maximum highest tem-
perature was recorded in May 2013 while the lowest 
temperature was recorded in June 1989. The lowest 
temperature was recorded in January 1990 while 
the highest minimum temperature was recorded in 
January 2006. The month of May and June recorded 
the highest temperature was recorded in November 
and December. The temperature was recorded in 
December and January while the highest temperature 
was recorded in March and April. Temperature seem 
to be unstable throughout the year. However, from 
April temperature drop significantly till July and start 
rising again till October. The lowest temperatures 
are experienced in November with December being 

the coldest month of the year. High temperatures are 
experienced in the month of May and June.

Model building for monthly series

According to Takele (2012), the process of model 
fitting involves data plotting, data transformation if 
necessary and identification of dependence order, 
estimation of parameter, diagnostic analysis and 
choosing appropriate model. In this section, an 
univariate ARIMA methodology is used to model 
monthly temperature of Hisar and Bhiwani.

Model identification

ACF and PACF plots are used in the identification of 
the values p, q, P and Q. For the non-seasonal part, 
spikes of the ACF at low lags are used to identify 
the value of q while the value of p is identified by 
observing the spikes at low lags of the PACF. For the 
seasonal part the value of Q is observed from the ACF 
at lags that are multiples of S while for P, the PACF 
is observed at lags that are multiples of S. Looking 
at the ACF plots and PACF plots for differenced time 
series, the following models are suggested;

Best fitted models for temperature of Hisar and 
Bhiwani

       Hisar- ARIMA (0,0,1) (0,1,1)
       Bhiwani- ARIMA (1,0,0) (0,1,1)

Diagnostic aSnalysis

For a well fitted model, the standardized residuals 
estimated from the model should behave as an inde-
pendent identically distributed sequence with zero 
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Fig. 7. Residual ACF and PACF temperature model of Hisar.

Fig. 8. Residual ACF and PACF temperature model of Bhiwani.

mean and constant variance.

Diagnostic analysis for temperature model

From the time plot of the residuals against time, we 
can see that there is no obvious pattern in the plot 
except for a possible outlier and it looks like an 
independently and identically distributed sequence 
of mean zero with a constant variance (Figs. 7–8). 
The plots of the ACF of the residuals lack enough 
evidence of significant spikes which clearly shows 
that the residuals are white noise.

Model validation

In order to test the adequacy and predictive ability of 
the chosen models, the actual data sets, predicted val-
ues, lower and upper limits are plotted and displayed 
in Fig. (3 and 4). The graphs show that the predicted 
values are well-fitted through the original data with 

the lower and upper limits containing majorities 
of the original data. This indicates that the models 
chosen for temperature series are the best fitted ones 
for the data sets.

Forecasting

Forecasting helps in planning and decision making 
process since it gives an insight of the future uncer-
tainty using the past and current behavior of given 
observations. From most research studies, the selected 
model is not always the best for forecasting. Further 
accuracy tests such as MAE, MAPE and RMSE must 
therefore be carried out on the model. The (Table 
1) shows a summary of ME, RMSE and MAE for 
temperature models.

The data depicted (Table1) that about the fore-
casting accuracy by calculating the mean value the 
ARIMA (0,0,1) (0,1,1) and ARIMA (1,0,0) (0,1,1) 
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Stationary R-squared (0.438) not much difference. 
However, ARIMA (0,0,1) (0,1,1) and ARIMA (1,0,0) 
(0,1,1) RMSE was found large 1.014 in Hisar district.  
In case of, MAPE calculation showed that accuracy 
of forecasting model possessed not much difference 
i.e., (3.248) in comparison of (3.242). While, the 
calculation in ARIMA (0,0,1) (0,1,1) and ARIMA 
(1,0,0) (0,1,1) MAE secured higher mean value 
(0.770) whereas, in Bhiwani secured mean (0.764). 
It is indicated from the (Table 1) in each parameters 
of forecasting accuracy were not found highly differ-
entiated in both ARIMA models.

CONCLUSION

ARIMA model offers a good technique for predicting 
the magnitude of any variable. Its strength lies in the 
fact that the method is suitable for any time series 
with any pattern of change and it does not require the 
forecaster to choose a priori the value of any param-
eter. It can be successfully used for forecasting long 
time series data. We found that the performance of 
ARIMA model is evaluated by forecasting the data 
from 1985-2016 both the forecasted and observed 
monthly temperature data fitted on the same plot and 
indicate the model accuracy/adequacy for perfor-
mance purpose. The similarity in matching between 
the forecasted and observed temperature were good. 
While the ARIMA model catches the correct trend 
overall and predicts the monthly temperature with 
accuracy. The analysis revealed that the best model 
for Hisar temperature is ARIMA (0,0,1) (0,1,1) and 
for Bhiwani is ARIMA (1,0,0) (0,1,1). The model 
residuals for both series are near normality as most 
points fall on the straight line with a few close to it. 
The residuals are also confirmed to be white noise. 
From the model validation results, the predicted val-

ues are very much well-fitted through the original data 
with the lower and upper limits containing majorities 
of the temperature original data.The identified mod-
els are therefore adequate to be used for forecasting 
monthly temperature in Hisar and Bhiwani. Accord-
ing to the similar study it was found that fluctuation 
of temperature is marked more in case of minimum 
temperature but slightly steady in case of maximum 
temperature. This is the signature of increasing global 
warming in terms of temperature. The fitted forecast-
ed model can be used to generate the forecast value of 
temperature in others area and the comparison among 
them would provide better idea about the changing 
pattern of temperature specifically and would give an 
idea about the local changing pattern of climate. This 
is also suggested that this seasonal model can also be 
used in any other areas of time dependent data with 
necessary modifications (Sultana and Hasan 2015). 
Moreover, study also indicated that the Box-Jenkins 
ARIMA method has proved to be a useful technique 
which can help decision makers to establish better 
strategies as well as to set up priorities for equip-
ping themselves against upcoming weather changes 
(Uchechukwu et al. 2014).
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