Environment and Ecology 41 (2A) : 1040—1044, April–June 2023 ISSN 0970-0420

Effect of Zein Based Edible Coatings in Litchi Fruits cv Rose Scented

Kusum Farswan, Omveer Singh, Ranu Karakoti, Rehan

Received 3 November 2022, Accepted 22 March 2023, Published on 17 May 2023

ABSTRACT

The present investigation was conducted at Department of Horticulture, GB Pant University of Agriculture and Technology, Pantnagar during the year 2018 on Litchi cv Rose Scented to study the response of different coating treatments on post-harvest life and physico-chemical attributes of litchi fruits. The experiment consisted of 7 treatments and among all treatments, T_3 (Zein @ 2.0%) + Glycerol @ 0.75%) was found effective in exhibiting better shelf life of fruits as it retained higher fruit weight and ascorbic acid content, moderate TSS and good anthocyanin content along with less acidity and physiological loss in weight. T_3 has recorded highest reducing sugar

Kusum Farswan¹*

¹Assistant Professor College of Agriculture Sciences, Teerthanker Mahaveer University,

Omveer Singh²

²Professor

Department of Horticulture, GB Pant University of Agriculture and Technology, Pantnagar, India

Ranu Karakoti³

³Assistant Agriculture Officer III,

Government of Uttarakhand, India

Rehan⁴

⁴Assistant Professor

Department of Horticulture, Lovely Professional University, Punjab, India

Email: kusumfarswan.14feb@gmail.com

*Corresponding author

(10.099%) and total sugar (12.086%) while untreated fruits reported the lowest one. T₂ (Zein @ 1.5% + Glycerol @ 0.75%) recorded highest anthocyanin content 13.230 mg/100 g.

Keywords Litchi, Zein, Coating, Shelf life, Physico-chemical attributes.

INTRODUCTION

Litchi (*Litchi chinensis* Sonn.) belongs to family Sapindaceace. It is an important subtropical fruit crop which is native to Southern China. Litchi was introduced to India in 17th century (Liang 1981). Because of the delicious fruit quality as table purpose and processed products, litchi is a highly demanded fruit. Litchi fruit is highly nutritious as it contains 83.6 g moisture, 0.7g protein, 0.1 g fat, 15.0 g carbohydrates, 4.0 mg calcium, 32.0 mg phosphorus, 0.7 mg iron, 0.02 mg thiamine, 0.07 mg riboflavin, 1.1 mg niacin, 15 mg ascorbic acid and traces of carotene (Deng *et al.* 1999).

India is the second largest producer of litchi in the world next after China. In India, it is mainly grown in Bihar, West Bengal, Uttar Pradesh, Punjab and Uttarakhand. Major litchi producing districts in Uttarakhand are Dehradun, Haridwar, Nainital and US Nagar.

Being a non-climacteric fruit, litchi does not improve its quality after harvesting, but has to ripen on the tree only (Chen *et al.* 2001). Therefore, ripened fruits are harvested and should reach to the consumers

1040

Moradabad 244001, Uttar Pradesh, India

immediately. In order to extend the availability of fruits, storage life of the fruits has to be increased. The harvesting of litchi starts from last week of May and continues till the end of June.

Litchi is very delicate fruit and highly perishable in nature accounting for its low shelf life. The attractive bright red color is lost within 48 hrs of harvest (Underhill and Critchley 1993).

Many techniques have been developed over the years in order to extend the storage life of fruits. One such approach is the use of environment friendly edible coatings which are relatively inexpensive. Edible films and coatings can be potentially used as an elective preservation technique that can provide an additional protective coating that can not only keep fruit plumpness, fresh appearance and hardness but also improve the luster of the fruit surface, thereby increasing the commercial value of fruits (Xu et al. 2003). An edible coating is a thin layer which gets deposited on the fruit surface and is co-consumed. It improves handling properties, prevent the moisture loss, increase the shelf-life and reduce the need of packaging material. As the film acts as barrier to moisture/oil or vapor transmission, the shelf-life of fruit gets extended. Edible coatings make good barrier to oxygen and lipid at low to intermediate RH because the polymers can effectively make hydrogen bonds. An edible coating have good eating properties: Acceptable color, odor, taste, texture and flavor.

Proteins and polysaccharides generally have a good barrier to oxygen at low relative humidity due to their tightly packed hydrogen-bonded network structure but have a poor moisture barrier due to their hydrophilic nature (McHugh and Krochta 1994). Zein is a natural storage protein found in corn kernels. Zein coatings have been used to coat nuts and candy for increased gloss, prevention of oxidation and development of off-odors because of their good barrier properties against oxygen and lipids (Bai et al. 2003). Zein-based coatings are applied to fresh as well as dried fruits, often as a substitute for shellac coatings because of its high gloss appearance, faster drying rate and increased stability during storage (Gennadios and Weller 1990). Zein have a good barrier to oxygen due to their tightly packed hydrogen-bonded network structure.

Thus, the present study was aimed to investigate the effect of zein based coatings on their ability to extend the shelf life of fresh litchi fruits and their influence on physiological and biochemical changes in fresh fruits.

MATERIALS AND METHODS

Litchi fruits (cv Rose Scented) were harvested in June, 2018 at fully mature stage from the orchard of Horticultural Research Center, Pattharchatta, Department of Horticulture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar. The fresh

Table 1. Effect of post-harvest application of different coatings on weight (g), physiological loss in weight (%) and anthocyanin content (mg/100 g) of litchi cv Rose Scented.

Treatment	8	S	-	ht (g) terval (dav	ys)		Physiological loss in weight (%) Storage interval (days)								
	0	3	6	9	12	15	Mean	0	3	6	9	12	15	Mean	
T ₁	22.233	21.730	21.167	20.777	19.897	19.707	20.918	0.000	2.267	4.797	6.550	10.507	11.360	5.913	
T ₂	21.800	21.337	20.833	20.460	20.067	19.007	20.584	0.000	2.127	4.430	6.147	8.497	12.803	5.667	
T_3^2	21.267	20.903	20.520	20.147	19.987	19.843	20.444	0.000	1.707	3.510	5.267	6.017	6.690	3.865	
T ₄	21.550	20.590	20.157	19.473	19.310	19.107	20.031	0.000	4.453	6.463	9.633	10.393	11.337	7.047	
T ₅	21.353	20.907	20.530	20.217	20.013	19.830	20.475	0.000	2.093	3.853	5.320	6.273	7.137	4.113	
T ₆	21.310	20.810	20.413	20.200	20.003	19.880	20.436	0.000	2.343	4.203	5.207	6.130	6.710	4.099	
T ₂	21.103	20.670	20.140	19.600	19.100	18.407	19.837	0.000	2.053	4.553	7.120	9.490	12.790	6.001	
Mean	21.517	20.993	20.537	20.125	19.768	19.397		0.000	2.435	4.544	6.463	8.187	9.832		
		CD at 5	5%		$SEm \pm$			CD at 5%							
Treatment		0.212			0.075				0.236			0.084			
Days		0.196			0.070				0.219			0.078			
Treatment		0.518			0.184				0.579			0.205			
× Days															

Treatment	ts			ontent (m terval (da	0 0/)		TSS (° Brix) Storage interval (days)							
	0	3	6	9	12	15	Mean	0	3	6	9	12	15	Mean	
Τ,	19.883	18.563	15.723	11.643	4.903	3.183	12.317	18.013	18.150	18.380	18.660	19.007	19.423	18.606	
T ₂	20.837	19.597	16.937	11.977	5.497	4.537	13.230	17.960	18.090	18.300	18.550	18.910	19.443	18.542	
T ₃ ²	20.157	18.977	16.437	11.557	5.177	4.257	12.760	18.323	18.400	18.570	18.800	19.117	19.520	18.788	
T ₄	19.780	18.500	15.780	10.780	4.200	3.420	12.077	17.907	18.007	18.240	18.500	18.833	19.280	18.461	
T_5^{\dagger}	19.943	18.803	16.383	11.563	5.423	4.583	12.783	18.267	18.340	18.490	18.677	18.977	19.363	18.686	
T ₆	19.417	18.337	16.077	11.397	5.377	4.497	12.517	18.440	18.500	18.610	18.753	19.047	19.403	18.792	
T ₇	20.677	19.277	16.317	11.137	4.057	2.317	12.297	17.907	18.020	18.163	18.357	18.417	18.527	18.232	
Mean	20.099	18.865	16.236	11.436	4.948	3.828		18.117	18.215	18.393	18.614	18.901	19.280		
		CD at 5	%		SEm ±			CD at 5% SEm ±							
Treatment	t	0.029			0.010				0.0	28		0.010			
Days		0.027			0.010				0.0	26		0.009			
Treatment	t	0.072			0.026				0.0	69		0.025			
× Days															

Table 2. Effect of post-harvest application of different coatings on anthocyanin content (mg/100 g) and total soluble solids (° Brix) of litchi cv Rose Scented.

fruits of uniform size, shape, color and free from physical injury, diseases and pests were selected for the experiment and randomly distributed into group of 15 fruits in each replication and for each treatment, three replications were used. The fruits were immediately brought to Post-harvest Laboratory of Horticulture Department and firstly pre-cooled in order to remove field heat. After pre-cooling, the fruits were washed thoroughly and dried, following which coatings were applied to the fruits. Different coating treatments of Zein were prepared at different concentrations i.e. 1.0%, 1.5% and 2.0%. The experiment was laid out in Completely Randomized Design consisted of seven treatments viz.,

 T_1 : Zein (1.0%) + Glycerol (0.75%),

 T_{2} : Zein (1.5%) + Glycerol (0.75%),

 T_{3} : Zein (2.0%) + Glycerol (0.75%),

 T_4 : Zein (1.0%) + Glycerol (0.75%) + Ascorbic acid (1.0%),

 T_5 : Zein (1.5%) + Glycerol (0.75%) + Ascorbic acid (1.0%),

 T_6 : Zein (2.0%) + Glycerol (0.75%) + Ascorbic acid (1.0%) and

T₇: Control.

Fruits were dipped for 10 minutes in these coating

Table 3. Effect of post-harvest application of different coatings on acidity (%) and ascorbic acid content (mg/ 100 g) of litchi cv Rose Scented.

Treatments				idity (% interval	/			Ascorbic acid (mg/100 g) Storage interval (days)							
	0	3	6	9	12	15	Mean	0	3	6	9	12	15	Mean	
T ₁	0.367	0.330	0.280	0.240	0.207	0.187	0.268	27.117	26.057	24.803	23.197	21.523	19.817	23.752	
T ₂	0.360	0.340	0.307	0.273	0.233	0.203	0.286	27.537	26.563	25.460	24.000	22.483	20.933	24.496	
T ₃	0.343	0.313	0.277	0.240	0.210	0.197	0.263	27.400	26.517	25.510	24.153	22.697	22.697	24.829	
T ₄	0.377	0.367	0.367	0.327	0.290	0.273	0.333	26.897	26.097	25.117	23.817	23.817	20.977	24.453	
T ₅	0.387	0.367	0.337	0.303	0.280	0.227	0.317	27.237	26.517	25.620	24.417	23.090	21.737	24.769	
T ₆	0.320	0.297	0.287	0.257	0.247	0.240	0.274	27.303	26.597	25.753	24.710	23.563	22.357	25.047	
T ₇	0.380	0.353	0.307	0.270	0.227	0.203	0.290	27.663	26.440	24.983	23.257	21.507	18.513	23.727	
Mean	0.362	0.338	0.309	0.273	0.242	0.219		27.308	26.398	25.321	23.936	22.669	21.004		
		CD at :	5%		SEm ±				CD a	nt 5%		$\text{SEm}\pm$			
Treatment		0.011			0.004				0.0		0.018				
Days		0.010			0.004				0.04	46		0.016			
Treatment × Days		0.027			0.010				0.12	0.043					

	1	11			0 0	()						
Treatments			Reducing	sugars (%)				Т	otal sugars (%	()		
			Storage in	terval (days))			Stora	Storage interval (days)			
	0	3	6	9	12	15	Mean	0	3	6		
T ₁	9.623	9.773	9.940	10.140	10.337	10.413	10.038	11.497	11.690	11.913		
T ₂	9.340	9.480	9.637	9.820	10.020	10.380	9.779	11.263	11.430	11.627		
T ₃	9.737	9.873	10.013	10.163	10.333	10.477	10.099	11.627	11.780	11.947		
T ₄	9.297	9.437	9.593	9.763	9.953	10.197	9.707	11.240	11.410	11.583		
T ₅	9.397	9.517	9.650	9.787	9.957	10.207	9.752	11.357	11.503	11.660		
T ₆	9.663	9.773	9.887	10.020	10.167	10.403	9.986	11.580	11.713	11.847		
T ₇	9.197	9.357	9.537	9.760	9.920	9.973	9.624	11.000	11.200	11.443		
Mean	9.465	9.601	9.751	9.922	10.098	10.293		11.366	11.532	11.717		
		CD at 5%	6		$SEm \pm$			CD at 5%				
Treatment		0.018			0.006				0.017			
Days		0.017			0.006				0.016			
Treatment		0.044			0.016				0.043			
× Days												

Table 4. Effect of post-harvest application of different coatings on sugar content (%) of litchi cv Rose Scented.

Table 4. Continued.

Treatments		otal sugars (Non-reducing sugars (%)									
	Stora	age interval	(days)		Storage interval (days)									
	9	12	15	Mean	0	3	6	9	12	15	Mean			
T ₁	12.183	12.427	12.567	12.046	1.873	1.917	1.973	2.043	2.090	2.153	2.008			
T ₂	11.867	12.123	12.550	11.810	1.923	1.950	1.990	2.047	2.103	2.170	2.031			
T ₃ ²	12.137	12.357	12.667	12.086	1.890	1.907	1.933	1.973	2.023	2.190	1.986			
T ₄	11.810	12.040	12.340	11.737	1.943	1.973	1.990	2.047	2.087	2.143	2.031			
T ₅	11.830	12.040	12.330	11.787	1.960	1.987	2.010	2.043	2.083	2.123	2.034			
T ₆	12.020	12.210	12.500	11.978	1.917	1.940	1.960	2.000	2.043	2.097	1.993			
T ₇	11.740	11.940	11.977	11.550	1.803	1.843	1.907	1.980	2.020	2.003	1.926			
Mean	11.941	12.162	12.419		1.901	1.931	1.966	2.019	2.064	2.126				
		$SEm \pm$				CD at 5%	, D		$SEm \pm$					
Treatment		0.006				0.012			0.004					
Days		0.006				0.011			0.004					
Treatment		0.015				0.028			0.010					
× Days														

solutions and allowed to dry for one hour after dipping. Fruits were placed in a perforated polythene bags providing ventilation by piercing small holes in polythene bag and placed in cold store at 4° C.

All the physico-chemical analysis were conducted at PG Laboratory of Department of Horticulture at 3 days interval i.e., 0, 3rd, 6th, 9th, 12th and 15th day. Observations on fruit weight (g) with digital weighing machine, physiological loss in weight (%), total soluble solids (°Brix) with the help of hand refractometer; titratable acidity (%) and ascorbic acid (mg/100 g) and sugars (%) as per method as described by Ranganna (1986) and anthocyanin content (mg/100 g) according to method of Mazumdar and Majumdar (2003).

RESULTS AND DISCUSSION

Among all the treatments, weight gradually decreased with the advancement in storage (Table 1). Maximum weight (20.918 g) was found in T_1 and minimum in T_7 (control) i.e. 19.837g. Physiological loss in weight was recorded lowest in T_3 (3.865%) and highest 7.047% and 6.001% in T_4 and T_7 (control) respectively. Similar result was reported by Baraiya *et al.* (2015), when they used zein 2 % + cystein 0.2 % as a coating material on jamun. The weight loss reduction can be due to the effect of protein-based edible coatings, which prevented the dessication of the fruits that tend to have the walls degraded and the water released, causing tissue wilting (Cipolatti *et al.* 2012).

Anthocyanin content was found highest (13.230 mg/ 100 g) in T₂ followed by T₅ (12.783 mg/ 100 g) and T₃ (12.760 mg/ 100 g). Zein coating significantly reduced the loss of anthocyanin content in storage. Similar result was reported when the application of zein coating delayed color change in tomato fruit (Park *et al.* 1994). The concentration of total soluble solids (TSS) in litchi fruit increased during the storage period (Table 2). Treatment with zein coatings reduced the increase in the concentration of TSS. Maximum TSS was recorded in T₆ (18.792°Brix) followed by T₃ (18.788°Brix) and minimum in T₇ (18.232°Brix).

In Table 3, the titratable acidity was relatively higher at harvest and then it decreased with advancement in storage. The decrease in acid content of fruits with the increase in storage could be attributed to the use of organic acids in respiratory process by the fruit cells and conversion of acids into total sugars (Echeverria and Valich 1989). Acidity was recorded minimum in T_{2} (0.263%) and maximum in T_{4} (0.333%). The lower levels of titratable acidity in T₂ may be due to higher concentration of zein coating acting as a protective O₂ barrier which might inhibited respiration. Ascorbic acid content decreased with increasing storage time in both control and coated samples. T₃ was found significantly effective to reduce decreasing trend of ascorbic acid content in pulp of litchi. The coating formulations may reduce O₂ diffusion and consequently better preservation of ascorbic acid contents. Gol and Rao (2014) reported that zein coating seemed to have a beneficial impact on delaying the changes in weight loss and titratable acidity of mango.

In Table 4, significantly higher concentration of reducing sugars (10.099%) and total sugars (12.086%) was found in T_3 as compared to the untreated fruits. It may be due to conversion of starch into simple sugar or may be due to conversion of certain cell wall material such as hemicelluloses into reducing substance during prolonged storage (Stahi and Camp 1971).

CONCLUSION

The present investigation concluded that T₃ (Zein

(@ 2.0%) + Glycerol (@ 0.75%) was found effective in exhibiting better shelf life of fruits as it retained higher fruit weight and ascorbic acid content, moderate TSS and good anthocyanin content along with less acidity and physiological loss in weight. T_3 has recorded highest reducing sugar (10.099%) and total sugar (12.086%) while untreated fruits reported the lowest one.

REFERENCES

- Bai J, Alleyne V, Hagenmaier RD, Mattheis JP, Baldwin EA (2003) Formulation of zein coatings for apple (*Malus domestica* Borkh.). *Postharvest Biol Technol* 28: 259–268.
- Baraiya NS, Rao TVR, Thakkar VR (2015) Improvement of postharvest quality and storability of jamun fruit (*Syzygium cumini* L. Var. Paras) by zein coating enriched with antioxidants. *Food Bioprocess Technol* 8(11): 2225-2234.
- Chen W, Wu Z, Ji Z, Su M (2001) Postharvest research and handling of litchi in China - a review. *Acta Horticulturae* 558: 321–329.
- Cipolatti EP, Kupski L, Rocha MD, Oliveira MDS, Buffon JG, Furlong EB (2012) Application of protein-phenolic based coating on tomatoes (*Lycopersicum esculentum*). Food Sci Technol 32(3): 594-598.
- Deng XP, Han ZH, Li SH (1999) Fruit Tree Biology. Beijing: Higher Education Flapping Populations. Appendix 1.
- Echeverria E, Valich J (1989) Enzymes of sugar and acid metabolism in stored Valencia Oranges. J Am Soc Horticult Sci 114: 445-449.
- Gennadios A, Weller CL (1990) Edible films and coatings from wheat and corn proteins. *Food Technol* 4410: 63-69.
- Gol NB, Rao TR (2014) Influence of zein and gelatin coatings on the postharvest quality and shelf life extension of mango (*Mangifera indica* L.). *Fruits* 69(2): 101-115.
- Liang J (1981) The litchi, origin, utilization and development of its culture. *J Agric Trinidad Bot Appl* 28: 259-270.
- Mazumdar BC, Majumdar K (2003) Methods of physico-chemical analysis of fruits. Daya Publishing House, Delhi, India, pp 137-138.
- McHugh TH, Krochta JM (1994) Water-vapor permeability properties of edible whey protein-lipid emulsion films. J Ame Oil Chemists Soc 71: 307–312.
- Park HJ, Chinnan MS, Shewfelt RL (1994) Edible coating effects on storage life and quality of tomatoes. J Food Sci 59: 568–570.
- Ranganna S (1986) Handbook of Analysis and Quality Control for Fruits and Vegetable Products. 2nd ed. Tata Mc Graw Hill Publishing Co Ltd, New Delhi, pp 1-24.
- Stahi AL, Camp AF (1971) Citrus fruits. In: (ed. Hulme AC) The Biochemistry of Fruits and their Products. 2: 107-169.
- Underhill SJR, Critchley C (1993) Lychee pericarp browning caused by heat injury. *Hort Sci* 28: 721–722.
- Xu S, Xu LD, Chen X (2003) Determining optimum edible films for kiwifruits using an analytical hierarchy process. *Comput Oper Res* 30: 877–886.