Environment and Ecology 41 (1) : 111—117, January–March 2023 ISSN 0970-0420

Comparision of Organic and Inorganic Sources of Nutrients on the Performance of *Phyllanthus amarus* Schum and Thonn. under Northern Dry Zone of Karnataka

Divyashree N., Singh V. P., Vishwanath Y. C.

Received 7 September 2022, Accepted 7 November 2022, Published on 27 January 2023

ABSTRACT

At the Main Horticultural Research and Extension Center (MHREC), UHS, Bagalkot, Udyanagiri, Bagalkot during 2018–19 *kharif* season, a field experiment using various combinations of organic manures and inorganic fertilizers was conducted to gather data on the effects of various organic and inorganic sources of nutrients on the performance of *Phyllanthus amarus* in the Northern Dry Zone of Karnataka. Application of $M_2V_1F_3$ (15 tonnes FYM, 2 tonnes vermicompost, and fertilizer combination

Divyashree N.^{1*}, Singh V. P.², Vishwanath Y. C.³

¹PhD Scholar, ²³Assistant Professor, Spices, Department of Plantation, Medicinal and Aromatic crops, University of Horticultural Sciences, Bagalkot 587104, Karnataka, India

Email: divyashreenbalaji@gmail.com *Corresponding author

of 150: 60: 60 kg NPK per hectare) has resulted in significantly maximum plant height (79.30 cm), number of leaves per plant (280.33) and number of branches per plant (59.90) than other treatment combinations. The $M_2V_1F_2$ (15 tonnes FYM, 2 tonnes vermicompost and fertilizer combination of 100: 45: 45 kg NPK per hectare) treatment combination considerably increased the growth-related metrics such as plant spread (75.47 cm²/plant), leaf area (497.67 cm²/plant) and leaf area index (3.32). M₂V₁F₂ also produced the best fresh herbage yield (14.79 t/ha), highest dry herbage yield (6.61 t/ha), most nutrient uptake (N-178.59, P₂O₅-33.72, K₂O-173.88 kg/ha) by the plants, highest net returns (Rs 243709/ha) and highest benefit cost ratio (3.80). However, the highest phyllanthin concentration (0.98 %) was found when organic manures $M_2V_1F_0$ were applied (15 tonnes of FYM along with 2 tonnes of vermicompost).

Keywords Economics, Growth, *Phyllanthus amarus*, Phyllanthin content, Yield.

INTRODUCTION

Phyllanthus amarus Schum and Thonn. is an important herbaceous medicinal plant having pronounced hepatoprotective property, belongs to Euphorbiaceae family. It is popularly known as "Bhumyamalaiki" in the Indian system of medicine. It is native to America and widely distributed in Cuba, Nigeria, Philippines, China, West Africa and other humid tropical countries in the world. It has about approximately 800 species which are found in tropical and subtropical countries (Mazumder et al. 2006). It is kharif season crop found abundantly throughout the hotter parts of India upto 1000 meters altitude, which is grown commonly in Maharashtra, Punjab, Uttar Pradesh, Tamil Nadu, Haryana, Sikkim, Karnataka and Andhra Pradesh. It elaborates medicinally important organic compounds having different classes including alkaloids, steroids, flavonoids, terpenoids, lipids, lignins and coumarins. Among all the compounds, the important lignans *i.e.*, phyllanthin (a bitter constituent) and hypophyllanthin (a non-bitter constituent) gaining importance in Indian system of medicine because of its novel antiviral activity against Hepatitis - B virus, In India over 40 million people are Hepatitis - B carriers. While, WHO has recorded the number of Hepatitis - B carriers all over the world at about 257 crores. The problem is that, in allopathic system there is no medicine found for the effective cure of Hepatitis - B, though it has vaccine to prevent it. P. amarus also acts against several other biological activities such as kidney and gallbladder stones, cold, flu, tuberculosis, and the liver diseases and disorders including anemia, jaundice and liver cancer. The dry leaves contain high phyllanthin (0.4%) whereas, in root and stem, it is in minor quantities (Sharma et al. 2012).

Because of numerous medicinal properties, it is gaining great demand from both Ayurvedic and pharmaceutical industries. So, it needs commercial cultivation to meet its demand. Hence, the challenge is to combine organic manures with chemical fertilizer to optimize nutrient availability to crop plant for optimum growth, yield, quality and with regard to soil health in a specific agro-ecological zone. Keeping this in view, the present investigation entitled "Comparision of organic and inorganic sources of nutrients on the performance of Bhumyamalaiki (Phyllanthus amarus Schum and Thonn.) under Northern Dry Zone of Karnataka" proposed to evaluate the best combination of inorganic fertilizers and organic manures for maximum growth, yield, quality and economics of P. amarus.

MATERIALS AND METHODS

The field experiment was conducted in kharif

2018-19 on sandy loam soil with pH 8.14, accessible nitrogen (238 kg/ha), phosphorus (34.36 kg/ha), and potassium (821.76 kg/ha) at the Main Horticultural Research and Extension Center (MHREC), University of Horticultural Sciences, Bagalkot. This location is situated in Northern Dry Zone of Karnataka (Zone-3) at 160 10' North latitude, 740 42' East longitude and There were 24 treatments made up of various levels in the experiment, which was set up in a factorial randomised block design with three replications. The three levels of FYM— M_0 , M_1 , M_2 (0, 7.5 and 15 t/ ha), vermicompost— V_0 and V_1 ($\overset{0}{0}$ and 2 t/ha) and chemical fertilizers - F_0 , F_1 , F_2 and F_3 (0: 0: 0, 50: 30: 30, 100: 45: 45 and 150: 60: 60 kg NPK/ha, respectively-are also included. Before seeds were sown, vermicompost, single super phosphate (P_2O_2) , potash in the form of muriate of potash (K₂O), and 50% of the prescribed amounts of nitrogen in the form of urea (N) were applied. The remaining 50% of nitrogen was top dressed 35 days after the seeds were sown. The full dose of FYM (Farmyard manure) was applied one week before sowing and mixed well (DAS). Mutant variety CIM Jeevan seeds were line seeded at a depth of 1-2 cm using 1kg seeds per hectare with a row to row spacing of 15 cm and an intra-row spacing of 10 cm. Light irrigation was provided just after seeding. At harvest, the observations were made on five randomly chosen plants from three replications (100 DAS). The observations included measuring plant spread along the East-West and North-South axes using a meter scale, calculating leaf area using a digital leaf area meter (LI-3100 Area Meter), and calculated LAI using the method proposed by Sestak et al. (2009). The entire plant was chopped with a sickel at the crown region and dried in the shade to preserve its colour.

Following drying, the plant's N, P and K contents were examined, and the total uptake of each was estimated. Total nitrogen was determined using the Kjeldhal method proposed by Piper (2016). Total phosphorus was determined using the vanadomolybdate method, and total potassium was estimated using the flame photometer method and represented as a percentage on a dry weight basis.

The whole herb's phyllanthin content was calculated using the RP-UFLC technique (Kshrisagar *et al.*

Treat-			Plan	t height	(cm)			Nun	nber of l	eaves			Numb	er of b	ranche	s
ments		F_0	F_1	F_2	F ₃	Mean	F ₀	F_1	F_2	F ₃	Mean	F_0	F_1	F_2	F ₃	Mean
M	V_0	2489	2900	3797	4513	3425	5053	7193	9647	12233	8532	2026	2450	2991	3503	2743
0	V_1^0	2706	3377	4358	5137	3895	6388	8986	11417	15833	10656	2344	2855	3353	4063	3154
	Mean	2598	3139	4077	4825	3660	5721	8090	10532	14033	9594	2185	2652	3172	3783	2948
M ₁	\mathbf{V}_{0}	3137	3900	4873	5470	4345	7327	9427	13733	18040	12132	2580	3073	3983	4573	3553
1	V_1°	3553	4217	5160	6403	4833	7865	10817	13590	21767	13510	2733	3451	4213	5083	3870
	Mean	3345	4058	5017	5937	4589	7596	10122	13662	19903	12821	2657	3262	4098	4828	3711
M ₂	\mathbf{V}_{0}	3720	4507	5763	6997	5247	9023	12273	15117	26367	15695	3007	3710	4487	5573	4194
2	V_1°	3383	4920	7420	7930	5913	10577	15267	27667	28033	20386	3227	4280	5923	5990	4855
	Mean	3552	4713	6592	7463	5580	9800	13770	21392	27200	18040	3117	3995	5205	5782	4525
Mean of	(F)	3165	3970	5229	6075	4610	7705	10660	15195	20379	13485	2653	3303	4158	4798	3728
Mean of																
(V)	\mathbf{V}_{0}	3115	3769	4811	5660	4339	7134	9631	12832	18880	12119	2538	3078	3820	4550	3496
	V_1°	3214	4171	5646	6490	4880	8276	11690	17558	21878	14850	2768	3528	4497	5046	3960
For comp	paring means of		SE	m±	(CD @ 5	%	SEn	n±	CD	@ 5%		SEm	±	C	D @ 5%
FYM (M)		06	8		193		255	5	72	25		050			142
	npost (V)		05			157		208) 2		041			116
Fertilizer	1 ()		07			222		294			37		057			164
M x V			09			NS		360))26		070			NS
M x F			13			385		509)	14	150		100			283
VxF			11	0		315		416	5	11	84		081			NS
MxVx	F		19	1		545		721	l	20)51		141			401
Farm yard manure (M)		1		Ver	micon	ipost (V	D)	7) Fertilizer (F)								
$M_0 = 0 \text{ t ha}^{-1}$				= 0 t h			$F_0 = 0.000 \text{ NPK (kg ha^{-1})}$									
	$M_0 = 75 \text{ t ha}^{-1}$		$V_1 = 2 \text{ t ha}^{-1}$					$F_1 = 50:30:30 \text{ NPK (kg ha^{-1})}$					NS= Non significant			
M,	$M_{2} = 15 \text{ t ha}^{-1}$. 1 2 t na					$F_2 = 100:45:45 \text{ NPK (kg ha^{-1})}$				1)			~	
2								$F_3 =$	150:60:	60 NPK	(kg ha	¹)				

Table 1. Effect of different treatments on growth attributes of Bhumyamalaiki (Phyllanthus amarus Schum and Thonn.) at harvest.

2016). The prices of all materials and current labor costs were taken into consideration while assessing the economics of *Phyllanthus amarus* cultivation. Based on the current market prices for the produce that was shade dried, the total income was calculated (Rs 50 kg⁻¹). Additionally, the benefit-cost ratio was calculated. Fischer's method of analysis of variance, as described by Panse and Sukhatme (1999), was used to statistically analyze the data collected throughout the crop period. The results have been discussed at a 5 % probability level.

RESULTS AND DISCUSSION

Growth parameters increased with increasing level of FYM (15 t/ha), vermicompost (2 t/ha) and NPK (150: 60 kg/ha). The yield parameters increased with increasing level of FYM (15 t/ha), vermicompost (2 t/ha) and second highest level of NPK (100: 45: 45 kg/ha). Whereas, in case of quality maximum phyllanthin was observed with application of higher levels of organic manures and without application of NPK (Chemical fertilizers).

The results of the experiment on integrated nutrient management with use of organic and chemical fertilizers showed significant effect on growth parameters (Table 1). Among different nutrients combinations $M_2V_1F_3$ (15 t FYM/ha + 2 t vermicompost/ha + 150: 60: 60 kg NPK/ha) showed significantly maximum plant height (79.30 cm), number of leaves (280.33), number of branches per plant (59.90), which was on par with $M_2V_1F_2$ (15 t FYM/ha + 2 t vermicompost/ha + 100: 45: 45 kg NPK/ha) followed by $M_2V_0F_3$ (15 t FYM/ha + 0 t vermicompost/ha + 150: 60: 60 kg NPK/ha).

Treat-			Pla	nt sprea	d (cm ²)		Leafa	irea (cm	²)			Leaf	area in	dex	
ments		F ₀	F_1	F_2	F_3	Mean	F_0	F_1	F_2	F ₃	Mean	F_0	F_1	F_2	F_3	Mean
M _o	\mathbf{V}_{0}	2163	2697	3227	3917	3001	17533	20733	27767	34333	25092	117	138	185	229	167
0	V_1^0	2573	3148	3780	4320	3455	18933	25600	33500	38900	29233	126	171	223	259	195
	Mean	2368	2922	3503	4118	3228	18233	23167	30633	36617	27163	122	154	204	244	181
M ₁	\mathbf{V}_{0}	2710	3643	4683	5600	4159	23467	33533	37867	40267	33783	156	224	252	268	225
1	V_1°	3383	4030	5167	6100	4670	30700	35100	38867	45700	37592	205	234	259	305	251
	Mean	3047	3837	4925	5850	4415	27083	34317	38367	42983	35688	181	229	256	287	238
M ₂	\mathbf{V}_{0}	3510	4810	5800	7233	5338	33633	38133	44233	48367	41092	224	254	295	322	274
-	V_1°	4500	5187	7547	6700	5983	37733	43267	49767	49300	45017	252	288	332	329	300
	Mean	4005	4998	6673	6967	5661	35683	40700	47000	48833	43054	238	271	313	326	287
Mean of	(F)	3140	3919	5034	5645	4434	27000	32728	38667	42811	35301	180	218	258	285	235
Mean of	2															
(V)	V_0	2794	3717	4570	5583	4166		30800	36622	40989	33322	166	205	244	273	222
	\mathbf{V}_1	3486	4121	5498	5707	4703	29122	34656	40711	44633	37281	194	231	271	298	249
For com	paring means	s of	S	Em ±		CD @	5%	SEr	n±	CD	@ 5%		SEm ±	E	CD	@ 5%
FYM (N	Ð			081		232		41	6	1	185		003			008
<pre></pre>	mpost (V)			066		189		34			67		002			006
Fertilize	1 ()			094		267		48			368		003			009
M x V	. (.)			115		NS		58			IS		004			NS
M x F				163		463		83			369		006			016
VxF				133		378		68			IS		005			NS
M x V x	F			230		655		11			351		008			022
Farm ya	ard manure	(M)		V	ermico	mpost	(V)		Fertili	izer (F)						
M	$= 0 t ha^{-1}$				$V_0 = 0 t$	ha ⁻¹		$F_0 =$	0:0:0 NI	PK (kg ł	na-1)					
$M_1 = 75 \text{ t ha}^{-1}$				v	$V_1 = 2 t$	ha-1		$F_1 = 50:30:30 \text{ NPK (kg ha^{-1})}$					Ν	S=Nc	n sign	ificant
$M_2^1 = 15 \text{ t ha}^{-1}$					1						(kg ha-1)					
								F ₃ =	150:60:	OU NPK	(kg ha ⁻¹))				

Table 2. Growth and developmental parameters of Bhumyamalaiki (*Phyllanthus amarus* Schum and Thonn.) as influenced by integrated nutrient management.

Among different nutrients combinations, M2V1F2 (15 t FYM/ha + 2 t vermicompost/ha + 100: 45: 45 kg)NPK/ha) showed significantly maximum plant spread represented in Table 2 (75.47 cm²) which was on par with $M_2V_0F_3$ (15 t FYM/ha + 0 t vermicompost/ha + 150: 60: 60 kg NPK/ha). Significantly, the maximum leaf area (497.67 cm²) and LAI (3.32) was recorded with $M_2V_1F_2$ (15 t FYM/ha + 2 t vermicompost/ha + 100: 45: 45 kg NPK/ha) which was on par with $M_2V_1F_2$ (15 t FYM/ha + 2 t vermicompost/ha + 150: 60: 60 kg NPK/ha) followed by $M_2V_0F_3$ (15 t FYM/ ha + 0 t vermicompost/ha + 150: 60: 60 kg NPK/ ha). This may be the result of higher nutrient release from both organic manures and inorganic fertilizers, which would have improved soil health by enhancing the translocation of photosynthates from source to sink and improving vegetative growth parameters, as well

as increased nutrient availability of both macro and micronutrients. Similar outcomes for ashwagandha, coleus and garden rue were reported by Sadhashiv (2010) and Konnur (2018).

The yield of both fresh and dry herbs was significantly impacted by the combined application of M, V and F (Table 3). Significantly, $M_2V_1F_2$ (15 t FYM/ ha + 2 t vermicompost/ha + 100: 45: 45 kg NPK/ ha) had the highest fresh and dry herbage yield, which was 14.79 t/ha and 6.61 t/ha, respectively. $M_2V_1F_3$ (15 t FYM/ha + 2 t vermicompost/ha + 150: 60: 60 kg NPK/ha) came in second, followed by $M_2V_0F_3$. The enhanced major and minor nutrient intake by the plants through FYM, vermicompost and chemical fertilizers in the presence of advantageous bacteria and growth-promoting chemicals may be the cause

Treat-		Fre	sh herb	age yiel	d (t/ha))	Dı	ry herbag	ge yield (t/ha)			Phyl	lanthii	n (%)	
ments		F_0	F_1	F ₂	F ₃	Mean	F_0	F_1	F ₂	F ₃	Mean	F_0	F_1	F_2	F_3	Mean
M ₀	V_0	435	491	560	658	536	160	193	237	320	227	065	072	069	067	068
0	V_1°	480	545	636	781	610	199	238	309	400	286	082	078	075	070	076
	Mean	457	518	598	719	573	179	215	273	360	257	073	075	072	069	072
M ₁	V_0	523	595	723	879	680	231	280	372	430	328	085	082	079	077	081
	\mathbf{V}_1	576	700	853	975	776	246	350	458	522	394	089	086	083	078	084
	Mean	550	647	788	927	728	239	315	415	476	361	087	084	081	077	082
M ₂	V_0	680	805	971	1255	928	255	382	470	565	418	085	084	082	079	083
	\mathbf{V}_1	754	1048	1479	1469	1188	317	500	661	653	533	085	098	092	082	090
	Mean	717	927	1225	1362	1058	286	441	566	609	475	085	091	087	081	086
Mean of (F)	575	697	870	1003	786	235	324	418	482	364	082	083	080	076	080
Mean of																
(V)	V_0	546	630	751	930	714	215	285	359	438	324	078	079	077	074	077
	\mathbf{V}_{1}^{*}	603	765	990	1075	858	254	362	476	525	404	085	087	083	077	083
For compa	aring means	of	SEm ± SI		Em ±	$SEm \pm$		C	D @ 59	%	SEn	n±		CI	D@5%	
FYM (M)			0	08		024		004		012		00	1			003
Vermicom	post (V)		0	07		019		004		010		00	1			003
Fertilizer (1 ()		0	10		028		005		014		00	1			004
M x V			0	12		034		006		017		00	2			NS
M x F			0	17		048		009		025		00	2			NS
V x F			0	14		039		007		020		00	2			NS
M x V x F			0	24		067		012		035		00	3			NS
Farm va	rd manure	(M)		١	ermic	ompost	(V)		Fertil	izer (F))					
	0 t ha-1				$V_0 = 0$			F_=	0:0:0 N							
	75 t ha-1				$V_{1}^{0} = 2 t$				50:30:30				N	S=No	on sign	ificant
	= 15 t ha-1				1			1			K (kg ha-	1)			0	
2											K (kg ha ⁻					

 Table 3. Effect of different treatments on yield attributes and phyllanthin content in Bhumyamalaiki (*Phyllanthus amarus* Schum and Thonn.).

of the improvement in yield parameters.

Although considerably unaffected, the phyllanthin concentration (Table 3) was highest (0.98 %) with $M_2V_1F_0$ (15 t FYM/ha + 2 t vermicompost/ha + 0: 0: 0 kg NPK/ha), followed by $M_2V_1F_1$ (15 t FYM/ ha + 2 t vermicompost/ha + 50: 30: 30 kg NPK/ ha) and $M_2V_1F_2$ (15 t FY This rise in phyllanthin at higher levels of organic manures may be brought on by increased protein synthesis, decreased starch accumulation and improved enzymatic antioxidant activity concentrated in plant mesophyll cells. The current results was consistent with those made by Kumar *et al.* (2013) in the case of stevia and by Sadashiv (2010) in the case of ashwagandha.

The Table 4 displays the total amount of N, P and K nutrients in the plant at harvest. The highest uptake

of nitrogen (N-178.59 kg/ha), phosphorus (P_2O_5 -33.72 kg/ha) and potassium (K_2O -173.88 kg/ha) were seen with $M_2V_1F_2$ (15 t FYM/ha + 2 t vermicompost/ ha + 100: 45: 45 kg NPK/ha), which was comparable to $M_2V_1F_3$ (15 t FYM/ha + 2 t vermicompost/ha + 150: 60: 60 kg NPK/ha). This may be attributable to FYM, as vermicompost and chemical fertilizers together had improved the nutrients availability to the plants due to the presence of humus-forming bacteria and growth-inducing substances, which led to an increase in nutrient uptake by the plants. Similar findings were observed for mints by stevia by Kumar *et al.* (2013) and Rashid *et al.* (2013) and Ashwagandha by Sadashiv (2010).

The highest net yields (Rs. 243709/ha) and B:C ratio (3.80) (Table 5 and Fig.1) were seen in $M_2V_1F_2$ (15 t FYM/ha + 2 t vermicompost/ha + 100: 45: 45

Treat-			Nitroger	ı (kg ha	-1)		Р	hospho	rous (k	g ha ⁻¹)			Potassi	ium (kg	ha-1)		
ments		F_0	F_1	F_2	F_3	Mean	F_0	\mathbf{F}_{1}	F_2	F ₃	Mean	F_0	F_1	F_2	F_3	Mean	
M ₀	V_0	1175	1969	3228	5006	2844	527	713	947	1289	869	1592	2491	3351	5060	3123	
0	V_1°	1959	2916	5128	7381	4346	716	903	1247	1772	1159	2495	3271	4688	6727	4295	
	Mean	1567	2442	4178	6194	3595	622	808	1097	1531	1014	2044	2881	4020	5893	3709	
M ₁	V_0	2537	3780	6412	9019	5437	831	1125	1613	2008	1394	3151	4117	5967	8027	5316	
•	V_1	3097	5738	8788	12194	7454	1001	1447	1956	2407	1703	3509	5426	7844	10470	6812	
	Mean	2817	4759	7600	10607	6446	916	1286	1784	2208	1548	3330	4771	6905	9249	6064	
M ₂	\mathbf{V}_{0}	3421	6555	9346	13661	8246	1029	1644	2159	2826	1914	3850	6467	8902	13274	8123	
~	V ₁	5289	10019	17859	16881	12512	1375	2132	3372	3309	2547	5316	9367	17388	15120	11798	
	Mean	4355	8287	13603	15271	10379	1202	1888	2765	3068	2231	4583	7917	13145	14197	9961	
Mean of	(F)	2913	5163	8460	10690	6807	913	1327	1882	2269	1598	3319	5190	8023	9780	6578	
Mean of																	
(V)	\mathbf{V}_{0}	2378	4101	6329	9228	5509	796	1161	1573	2041	1393	2864	4358	6073	8787	5521	
	V_1°	3448	6224	10592	12152	8104	1030	1494	2192	2496	1803	3774	6021	9973	10773	7635	
For com	paring mear	ns of	SE	m ±	C	D@5%	ó	SEm	ı±	CD	@ 5%		SEm	±	Cl	D@5%	
FYM (M	Ð		18	35		526		022	5	064	41		143			408	
	mpost (V)		15			430		018	4	052	23		117			333	
Fertilize			21			744		026	0	074	40		165			471	
МхV			26	51		607		031	8	090)6		202			576	
M x F			37			1052		045		12			286			815	
V x F			30)2		859		036	8	104	47		234			666	
M x V x	F		52	23		1488		063	7	18	13		405			1153	
Farm y	ard manur	e (M)			Vermi	icompo	st (V)		I	Fertilize	er (F)						
Ň	$= 0 t ha^{-1}$				$V_0 = 0 t$	ha-1		F	= 0:0:0	NPK (I	kg ha ⁻¹)						
$M_{1}^{0} = 75 \text{ t ha}^{-1}$					$V_{1} = 2 t$						K (kg ha	-1)	NS= Non significant				
	$f_2 = 15 \text{ t ha-1}$				I			·I	$F_2 = 100$:45:45	NPK (kg IPK (kg	g ha ⁻¹)			0		

Table 4. Effect of different treatments on nutrient uptake by the plants (kg ha⁻¹) in Bhumyamalaiki (Phyllanthus amarus Schum and Thonn.).

Table 5. Effect of different treatments on education	conomics in production of Bhumy	vamalaiki (Phyllanthus amarus Schum and Thonn).

Treat- mentc	Cost of cultivation	Cost of fertilizers	Cost of (Rs/	organics ha)	Total cost of cultivation	Dry herbage yield	Gross returns	Net returns	Benefit cost ratio
	(Rs/ha)	(Rs/ha)	FYM	Vermi- compost	(Rs/ha)	(t/ha)	(Rs/t)	(Rs/ha)	
$M_0V_0F_0$	55452	-	-	-	55452	160	79835	24383	144
$M_0V_0F_1$	55452	9476	-	-	563996	193	96296	39897	171
$M_0^{0}V_0^{0}F_2^{1}$	55452	15664	-	-	570184	237	118313	61294	207
$M_0 V_0 F_3$	55452	21852	-	-	576372	320	159808	102171	277
$M_0V_1F_0$	55452	-	-	10000	65452	199	99314	33862	152
$M_0 V_1 F_1$	55452	9476	-	10000	663996	238	118793	52393	179
$M_0^{0}V_1F_2^{1}$	55452	15664	-	10000	670184	309	154595	87577	231
$M_0^{V_1}F_3^{T_1}$	55452	21852	-	10000	676372	400	199863	132226	295
$M_{1}^{0}V_{0}F_{0}^{1}$	55452	-	10000	-	65452	231	115364	49912	176
$M_1V_0F_1$	55452	9476	10000	-	663996	280	140055	73655	211
$M_{1}V_{0}F_{2}$	55452	15664	10000	-	670184	372	185871	118853	277
$M_{1}V_{0}F_{3}$	55452	21852	10000	-	676372	430	215226	147589	318
$M_{1}V_{1}F_{0}$	55452	-	10000	10000	75452	246	123182	47730	163
$M_{1}^{1}V_{1}F_{1}^{1}$	55452	9476	10000	10000	763996	350	174897	98498	229
$M_1V_1F_2$	55452	15664	10000	10000	770184	458	228807	151788	297
$M_{1}^{1}V_{1}F_{3}^{2}$	55452	21852	10000	10000	776372	522	261043	183405	336
$M_{2}V_{0}F_{0}$	55452	-	20000	-	75452	255	127572	52120	169

Table 5. Continued.

Treat- ments	Cost of cultivatio	Cost of fertilizers	Cost of (Rs/	organics ha)	Total cost of cultivation	Dry herbage yield	Gross returns	Net returns	Benefit cost ratio
	(Rs/ha)	(Rs/ha)	FYM	Vermi- compost	(Rs/ha)	(t/ha)	(Rs/t)	(Rs/ha)	
$M_{2}V_{0}F_{1}$	55452	9476	20000	-	763996	382	190947	114547	250
$M_{2}V_{0}F_{2}$	55452	15664	20000	-	770184	470	234842	157824	305
$M_2 V_0 F_3$	55452	21852	20000	-	776372	565	292455	214818	377
$M_2 V_1 F_0$	55452	-	20000	10000	85452	317	158573	73121	186
$M_2V_1F_1$	55452	9476	20000	10000	863996	500	249931	163532	289
$M_{2}V_{1}F_{2}$	55452	15664	20000	10000	870184	661	330727	243709	380
$M_2^2 V_1^1 F_3^2$	55452	21852	20000	10000	876372	653	326612	238975	373

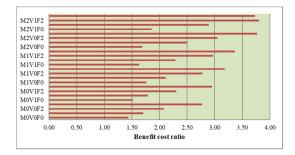


Fig. 1. Effect of different treatments on benefit cost ratio of Bhumyamalaiki (*Phyllanthus amarus* Schum and Thonn.).

Farm yard manure (M	 Vermicompost 	t (V)	Fertilizer (F)
$M_0 = 0 t ha^{-1}$	$V_0 = 0 t ha^{-1}$ 1	$F_0 = 0:0:0$	NPK (kg ha ⁻¹)
$M_1 = 75 \text{ t ha}^{-1}$	$V_1 = 2 t ha^{-1} F_1 =$	50:30:30) NPK (kg ha ⁻¹)
$M_2 = 15 \text{ t ha}^{-1}$	F,= 1	00:45:45	NPK (kg ha ⁻¹)
-	$F_{3} = 1$	50:60:60	NPK (kg ha ⁻¹)

kg NPK/ ha), which was followed by $M_2V_1F_3$ (15 t FYM/ha + 2 t vermicompost/ha + 150: 60: 60 kg NPK/ ha). This may be ascribed to the increased herb output as a result of the crop receiving the ideal level of nutrients from FYM, vermicompost and fertilizers.

CONCLUSION

From the current experiment, it can be deduced that the application of 15t FYM + 2t vermicompost + 100: 45: 45 kg NPK per hectare $(M_2V_1F_2)$ resulted in the largest fresh and dry herbage yield, acceptable quality and quantity of phyllanthin, maximum uptake of nutrients, greater benefit cost ratio and improvement in soil attributes under northern dry zone of Karnataka.

REFERENCES

- Konnur S, Umesha K, Prasad MBN, Shivashankara KS, Dayamani KJ, Shivanna M, Patil SV (2018) Integrated nutrient management in garden rue (*Ruta graveolens* L). J Pharmacog Phytochem 3: 443-446.
- Kshrisagar PR, Gaikwad NB, Panda S, Hedge HV, Pai SR (2016) Reverse phase ultra flow liquid chromatography diode array detector quantification of anticancerous and antidiabetic drug mangiferin from 11 species of Swertia from India. *Phar*macog Mag 12: 32-38.
- Kumar R, Sharma S, Prasad R (2013) Yield, nutrient uptake, and quality of stevia as affected by organic sources of nutrient. *Commun Soil Sci Pl Anal* 44: 3137–3149.
- Mazumder A, Mahato A and Mazumder R (2006) Antimicrobial potentiality of *Phyllanthus amarus* against drug resistant pathogens. *Natur Prod Res* 20: 323–326.
- Panse VG, Sukhatme PV (1995) Statistical Methods for Agricultural Workers, Indian council of Agricultural Research, New Delhi.
- Piper CS (2016) Soil and Plant Analysis Inter Science Publishers, New York.
- Rashid Z, Rashid M, Inamullah S, Rasool S, Bahar FA (2013) Effect of different levels of farmyard manure and nitrogen on t he yield and nitrogen uptake by stevia (*Stevia rebaudiana* Bertoni). *Afri J Agric Res* 8: 3941-3945.
- Sadashiv RP (2010) Integrated nutrient management in ashwa gandha (*Withania somnifera* Dunal), M Sc (Hort) *thesis*. Univ Agril Sci Dharwad, (India).
- Sestak A, Caotsky J, Jarvis PG (2009) Plant Photosynthetic Production Manual Methods, Dr Jank W, NV Publishers. The Hague, pp 343 -381.
- Sharma A, Singh RT, Anand S (2012) Estimation of phyllanthin and hypophyllanthin by high performance liquid chromatography in *Phyllanthus amarus*. *Photochem Anal* 4: 226-229.